| 27 | 0 | 32 |
| 下载次数 | 被引频次 | 阅读次数 |
以煤沥青为原料、纳米CaCO3为造孔剂,制备了煤沥青基多孔碳,经混酸氧化改性后用作光吸收体(NSCTP),与聚乙烯醇(PVA)复合构筑了煤沥青基多孔碳水凝胶界面水蒸发器(NSCTP@PVA).研究了光吸收体和蒸发器的微观结构、光吸收性能、亲水性、光热转换以及太阳能驱动界面水蒸发性能.结果表明:NSCTP@PVA水凝胶蒸发器具有优异的水传输特性和光热转换能力,在1 kW·m-2光照强度下,水蒸发速率为1.28 kg·m-2·h-1,光热转换效率为74.16%,且在3.5 wt%NaCl溶液以及模拟苦咸水中,经过长循环测试,水蒸发速率仍可稳定在1.20 kg·m-2·h-1,展现出优异的循环稳定性和蒸发性能.同时,NSCTP@PVA水凝胶蒸发器在海水淡化、苦咸水净化、染料去除及工业废水净化中均展现出优异的性能.
Abstract:Coal tar pitch-based porous carbon is prepared using coal tar pitch as the raw material and CaCO_3as the pore-making agent,after undergoing oxidation modification with a mixed acid,it is utilized as a light absorber(NSCTP).Subsequently,it is combined with polyvinyl alcohol(PVA) to construct a coal tar pitch-based porous carbon hydrogel interfacial water evaporator(NSCTP@PVA).A systematic study is carried out to examine the microstructure,light-absorption properties,hydrophilicity,photothermal conversion characteristics,and solardriven interfacial water evaporation performance of light absorbers and evaporators.The results show that the NSCTP@PVA hydrogel evaporator exhibits excellent water transport characteristics and photothermal conversion efficiency,with a water evaporation rate of 1.28 kg·m-2·h-1 and photothermal conversion efficiency of 74.16% under1 kW·m-2 light intensity.Even after long cycling in a 3.5 wt% NaCl solution and simulated brine,the evaporation rate remains stable at 1.20 kg·m-2·h-1,demonstrating remarkable cycling stability and evaporation performance.Furthermore,the NSCTP@PVA hydrogel evaporator shows excellent performance in seawater desalination,brine purification,dye removal,and industrial wastewater treatment.
[1] ZHAO L Y,TIAN J,LIU Y,et al.A novelfioatable composite hydrogel for solar evaporation enhancement[J].Environmental Science:Water Research&Technology,2020,6(1):221-230.
[2] DESHMUKH A,BOO C,KARANIKOLA V,et al.Membrane distillation at the water-energy nexus:Limits,opportunities,and challenges[J].Energy&Environmental Science,2018,11(5):1177-1196.
[3] QASIM M,BADRELZAMAN M,DARWISH N N,et al.Reverse osmosis desalination:A state-of-the-art review[J].Desalination,2019,459:59-104.
[4] SHI J H,GONG L,ZHANG T,et al.Study of the seawater desalination performance by electrodialysis[J].Membranes,2022,12(8):767.
[5]马赛男,闫卿,汪倩倩,等.生物基材料应用于界面光热水蒸发系统的研究进展[J].太阳能学报,2024,45(2):30-41.MA S N,YAN Q,WANG Q Q,et al.Research process of biomass-based materials applied to interfacial solar water evaporation system[J].Acta Energiae Solaris Sinica,2024,45(2):30-41.(in Chinese)
[6] KU B J,KIM D H,YASIN A S,et al.Solar-driven desalination using salt-rejecting plasmonic cellulose nanofiber membrane[J].Journal of Colloid and Interface Science,2023,634:543-552.
[7] IBRAHIM I,SEO D H,MCDONAGH A M,et al.Semiconductor photothermal materials enabling eficient solar steam generation toward desalination and wastewater treatment[J].Desalination,2021,500:114853.
[8] MAITY S,YADAV M,PATRA A K.Polypyrrole coated textiles as photothermal material for interfacial solar evaporation[J].Fibers and Polymers,2023,24(10):3591-3600.
[9] GONG F,WANG W B,LI H,et al.Solid waste and graphite derived solar steam generator for highly-eficient and cost-efiective water purification[J].Applied Energy,2020,261:114410.
[10]钱银豪,兰景瑞,李浩然,等.基于界面水蒸发的多孔光热材料水热平衡调控[J].工程热物理学报,2022,43(12):3312-3316.QIAN Y H,LAN J R,LI H R,et al.Regulating the balance between water heat in porous photothermal materials based on interfacial water evaporation[J].Journal of Engineering Thermophysics,2022,43(12):3312-3316.(in Chinese)
[11]杨地,史潇凡,张冀杰,等.光热材料在海水淡化领域的近期研究进展与展望[J].化学学报,2023,81(8):1052-1063.YANG D,SHI X F,ZHANG J J,et al.Recent research progress and prospect of photothermal materials in seawater desalination[J].Acta Chimica Sinica,2023,81(8):1052-1063.(in Chinese)
[12] MA Z H,WEI X Y,LIU G H,et al.Value-added utilization of high-temperature coal tar:A review[J].Fuel,2021,292:119954.
[13] WANG J,WANG R,GENG Y,et al.Activated pulverized coal membrane for efiective solar-driven interfacial evaporation and desalination[J].Chemical Engineering Science,2023,265:118248.
[14] ZHANG X,PI M,LU H,et al.A biomass hybrid hydrogel with hierarchical porous structure for eficient solar steam generation[J].Solar Energy Materials and Solar Cells,2022,242:111742.
[15] LEI W,KHAN S,CHEN L,et al.Hierarchical structures hydrogel evaporator and super hydrophilic water collect device for eficient solar steam evaporation[J].Nano Research,2020,14(4):1135-1140.
[16] CHEN Y,QIU H S,LI X F,et al.Three-level pore structure hydrogels for solar vapor generation[J].Applied Surface Science,2022,582:152483.
[17] YANG L,CHEN G L,ZHANG N,et al.Sustainable biochar-based solar absorbers for high-performance solar-driven steam generation and water purification[J].ACS Sustainable Chemistry&Engineering,2019,7(23):19311-19320.
[18] LIU X H,MISHRA D D,WANG X B,et al.Towards highly eficient solar-driven interfacial evaporation for desalination[J].Journal of Materials Chemistry A,2020,8(35):17907-17937.
[19] LIU C,CHANG X,MI H,et al.Modulating pore nanostructure coupled with N/O doping towards competitive coal tar pitch-based carbon cathode for aqueous Zn-ion storage[J].Carbon,2024,216:118523.
[20] WU Y,CAO J P,ZHAO X Y,et al.Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor[J].Electrochimica Acta,2017,252:397-407.
[21] SONG S J,HUO E G,BAI M N,et al.Plant transpiration inspired biomass-derived solar evaporator for highly eficient solar vapor generation[J].Separation and Purification Technology,2025,354:129413.
[22]吴声豪.石墨烯纳米结构的光热转换机理与界面能质传输特性及太阳能热局域化应用[D].杭州:浙江大学,2021.WU S H.Interfacial energy and mass transfer in the photothermal conversion of graphene nanostructures,and solar applications with heat localization[D].Hangzhou:Zhejiang University,2021.(in Chinese)
[23] ZHAO L M,YANG Z P,WANG J J,et al.Boosting solar-powered interfacial water evaporation by architecting 3D interconnected polymetric network in CNT cellular structure[J].Chemical Engineering Journal,2023,451:138676.
[24] ZOU H Q,MENG X T,ZHAO X,et al.Hofmeister efiect-enhanced hydration chemistry of hydrogel for high-eficiency solardriven interfacial desalination[J].Advanced Materials,2023,35(5):e2207262.
[25] CHEN L,DING Y,GONG J,et al.Molecular engineering of biomass-derived hybrid hydrogels for solar water purification[J].Journal of Colloid and Interface Science,2022,626:231-240.
[26] QIN J,JI J,HUANG W,et al.Experimental study of a novel direct-expansion variable frequencyfinned solar/air-assisted heat pump water heater[J].International Journal of Photoenergy,2018,2018(1):5986463.
[27] JIANG H,AI L,CHEN M,et al.Broadband nickel sulfide/nickel foam based solar evaporator for highly eficient water purification and electricity generation[J].ACS Sustainable Chemistry&Engineering,2020,8(29):10833-10841.
[28] NIU R,REN J,KOH J,et al.Bio-inspired sandwich-structured all-day-round solar evaporator for synergistic clean water and electricity generation[J].Advanced Energy Materials,2023,13(45):2302451.
[29] CHEN L,REN J X,GONG J,et al.Cost-efiective,scalable fabrication of self-fioating xerogel foam for simultaneous photothermal water evaporation and thermoelectric power generation[J].Chemical Engineering Journal,2023,454:140383.
[30]吴琼.南疆苦咸水可利用量评价:以阿拉尔市为例[D].乌鲁木齐:新疆农业大学,2021.WU Q.Evaluation of available brackish water in southern Xinjiang:A case study in Alar area[D].Urumqi:Xinjiang Agricultural University,2021.(in Chinese)
[31] IVAN M,SALEQUE A,AHMED S,et al.Waste egg tray and toner-derived highly eficient 3D solar evaporator for freshwater generation[J].ACS Applied Materials&Interfaces,2022,14(6):7936-7948.
[32] SU Y R,LIU L,GAO X C,et al.A high-eficient and salt-rejecting 2Dfilm for photothermal evaporation[J].iScience,2023,26(8):107347.
基本信息:
DOI:10.13568/j.cnki.651094.651316.2024.03.04.0003
中图分类号:TK519;TQ427.26
引用信息:
[1]张志伟,唐亚昆,刘浪,等.煤沥青基多孔碳水凝胶的构筑及其太阳能界面水蒸发性能研究[J].新疆大学学报(自然科学版中英文),2025,42(05):525-534.DOI:10.13568/j.cnki.651094.651316.2024.03.04.0003.
基金信息:
新疆维吾尔自治区自然科学基金重点项目“煤沥青基三维多孔碳材料的可控制备及其太阳能驱动苦咸水净化”(2022D01D28); 新疆维吾尔自治区重点研发专项“重质碳资源的化学组成分析、评价及下游产品开发”(2020B02019-1)