释放毒素的浮游植物与浮游动物相互作用时滞模型分析Analysis of a Toxic Producing Phytoplankton-zooplankton Interaction with Delay
曼合布拜·热合木,李晓娜
摘要(Abstract):
本文研究了浮游动物捕食延迟对浮游植物-浮游动物相互作用的整体动力学影响.首先,文章给出了系统解的正性与有界性;其次,分析了系统平衡点的存在性及稳定性.进一步,建立了当时滞经过阈值时的Hopf分支,模型中的功能反应函数是Tissietxi型的.本文通过分析方法和数值模拟方法得到了模型的定性行为.
关键词(KeyWords): 时滞浮游植物-浮游动物;存在性;稳定性;Hopf分支
基金项目(Foundation): 国家自然科学基金(11261058)
作者(Author): 曼合布拜·热合木,李晓娜
DOI: 10.13568/j.cnki.651094.2019.03.007
参考文献(References):
- [1]DUINKER J,WEFER G.Das CO2-problem und die rolle des ozeans[J].Naturwissenschaften,1994,81:237-242.
- [2]SAHA T,BANDYOPADHYAY M.Dynamical analysis of toxin producing phytoplankton-zooplankton interactions[J].Nonlinear Analysis:Real World Applications,2009,10(1):314-332.
- [3]SMAYDA T.What is a bloom?[J].A commentary.Limnol.Oceonogr,1997,42:1132-1336.
- [4]SMAYDA T.Bloom dynamics:physiology,hebaviour,trophic effects[J].Limnol.Oceaongr.1997,42(5):1132-1136.
- [5]ANDERSON DM.Toxic algae blooms and red tides:a global perspective.In:Okaichi T,Anderson D M,Nemoto T.Red tide[M].New York:biology,environmental science and toxicology,Elsevier,1989.
- [6]HALLEGRAEFF GM.A review of harmful algae blooms and the apparent global increase[J].Phycologia,1993,32:79-99.
- [7]IVES J.Possible mechanism underlying copepod drazing responses to levels of toxicity in trd tide dinoflagellatea[J].J Exp Mar Biol Ecol,1987,112:131-145.
- [8]MUKHOPADHYAY B,BHATTACHARYYA R.Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity[J].Ecol Model,2006,198(1-2):163-173.
- [9]CUSHING J M.Integrodifferential equations and delay models in population dynamics[M].Heidelberg:Springer,1977.
- [10]KUANG Y.Delay differential equations with applications in population dynamics[M].New York:Academic Press,1993.
- [11]MACDONALD N.Bological delay system:linear stsbility theory[M].Cambridge:Cambridge University Press,1989.
- [12]BERETTA E,KUANG Y.Geometric stability switch criteria in delay differential systens with delay dependant parameters[J].SIAM J Math Anal,2002,33:1144-1165.
- [13]CHENG Y F,Mehbuba Rehim.Study of a phytoplankton-zooplankton Interaction model with Delay[J],J Xinjiang Univ(Natural Sci Ed),2013,30(3),297-303.
- [14]ZHANG Z Z,Mehbuba Rehim.Global stability in a zooplankton-phytoplankton model[J],J Xinjiang Univ(Natural Sci Ed),2015,32(4),410-417.
- [15]GAZI N H,BANDYOPADHYAY M.Effect of time delay on a harvested predator-prey model[J].J Appl Math Comput,2008,26:263-280.
- [16]CHATTOPADHYAY J,SARKAR R R,ABDLLAOUI A.A delay differential equation model on harmful algal blooms in the presence of toxic substances[J].IMA J Math Appl Med Biol,2002,19:137-161.
- [17]Fu G,Ma W,RUAN S.Qualitative analysis of a chemostat model with inhibitory exponential substrate uptake[J].Chaos Solutions Fractals,2005,23(3):873-886.
- [18]HALE J,LUNEL S V.Introduction to functional differential equation[M].New York:Springer,1993.
- [19]SAHA T,BANDYOPADHYAY M.Dynamical analysis of toxin producing phytoplankton-zooplankton interactions[J].Nonlinear Anal Real Word APPL,2009,10:314-332.