带有源项的Chaplygin气体非对称Keyfitz-Kranzer方程组含狄拉克初值的广义黎曼问题The Riemann Problem with Delta Initial Data for Chaplygin Nonsymmetric Keyfitz-Kranzer System with a Source Term
宋赟,郭俐辉
摘要(Abstract):
本文主要研究了带有源项的Chaplygin气体非对称Keyfitz-Kranzer方程组含狄拉克初值的广义黎曼问题.由于非齐次项的影响,带有源项的Chaplygin气体非对称Keyfitz-Kranzer方程组的黎曼解不再是自相似的.我们利用广义Rankine-Hugoniot条件和熵条件,构造性地得到了带有源项的Chaplygin气体非对称Keyfitz-Kranzer方程组含狄拉克初值的整体广义解.
关键词(KeyWords): 非对称Keyfitz-Kranzer方程组;源项;Chaplygin气体;黎曼问题;狄拉克初值
基金项目(Foundation): 国家自然科学基金项目(11761068,11401508,11461066);; 新疆维吾尔自治区自然科学基金项目(2017D01C053)
作者(Author): 宋赟,郭俐辉
DOI: 10.13568/j.cnki.651094.2019.03.006
参考文献(References):
- [1]KEYFITZ B L,KRANZER H C.A system of nonstrictly hyperbolic conservation laws arising in elasticity theory[J].Arch Ration Mech Anal,1980,72(3):219-241.
- [2]AW A,RASCLE M.Resurrection of “second order” models of traffic flow[J].SIAM J Appl Math,2000,60:918-938.
- [3]GUO L H.The Riemann problem of the transport equations for the generalized chaplygin gas[J].Journal of Xinjinag University(Natural Science Edition),2013,30(2):170-176.
- [4]SHEN C,SUN M N.Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed AW-Rascle model[J].Journal of Differential Equations,2010,249(12):3024-3051.
- [5]SUN M N.Interactions of elementary waves for the AW-Rascle model[J].Siam Journal on Applied Mathematics,2009,69(6):1542-1558.
- [6]LU Y G.Existence of global bounded weak solutions to nonsymmetric systems of Keyfitz-Kranzer type[J].Funct Anal,2012,261(10):2797-2815.
- [7]CHENG H J.Delta shock waves for a linearly degenerate hyperbolic system of conservation laws of Keyfitz-Kranzer type[J].Adv Math Phys,2013,Article ID 958120,10 pages.
- [8]GUO L H,YIN G.Limit of Riemann solutions to the nonsymmetric system of Keyfitz-Kranzer type[J].The Scientific World Journal,2014,2014(3),Article ID287256,11 pages.
- [9]TEMPLE B.Global solution of the Cauchy problem for a class of 2×2 nonstrictly hyperbolic conservation laws[J].Adv in Appl Math,1982,3(3):335-375.
- [10]JAMES F,PENG Y J,PERTHAME B.Kinetic formulation for chromatography and some other hyperbolic systems[J].Math Pures Appl,1995,74:367-385.
- [11]GUO L H,LI T,PAN L J,et al.The Riemann problem with delta initial data for the one-dimensional chaplygin gas equations with a source term[J].Nonlinear Analysis Real World Applications,2018,41:588-606.
- [12]RYKOV E W,YU G,SINAI YA G.Generalized variational principle,global weak solutions and behavior with random initial data for system of conservation laws arising in adhesion particle dynamics[J].Comm Math Phys,1996,177(2):349-380.
- [13]WANG Z,ZHANG Q L.The Riemann problem with delta initial data for the one-dimensional chaplygin gas equations[J].Acta Math Sci,2012,32B(3):825-841.
- [14]YANG H C,SUN W H.The Riemann problem with initial data for a class of coupled hyperbolic of conservation laws[J].Nonlinear Anal TMA,2007,67(11):3041-3049.
- [15]李舒琪.非对称Keyfitz-Kranzer方程组的Riemann问题及其基本波的相互作用[D].乌鲁木齐:新疆大学,2018.Li S Q.The Riemann problem and interaction of elementary waves for the nonsymmetric Keyfitz-Kranzer equations[D].Urumqi:Xinjiang University,2018.
- [16]FACCANONI G,MANGENEY A.Exact solution for granular flows[J].Int J Numer Anal Methods Geomech,2013,37(10):1408-1433.
- [17]BENTO M C,BERTOLAMI O,SEN A A.Generalized Chaplygin gas,accelerated expansion and dark-energy-matter unification[J].Phys Rev D,2002,66(4):043507.
- [18]BILIC N,TUPPER G B,VIOLLIER R D.Dark matter,dark energy and the Chaplygin gas[J].arXiv:astro-ph/0207423.
- [19]DEV A,ALCANIZ J S,JAIN D.Cosmological consequences of a Chaplygin gas dark energy[J].Phys Rev D,2003,67:023515.
- [20]SETARE M R.Holographic chaplygin DGP cosmologies[J].Internat J Modern Phys D,2009,18(3):419-427.
- [21]SHEN C.The Riemann problem for the pressureless Euler system with the coulomb-like friction term[J].IMA Journal of Applied Mathematics,2016,81(1):76-99.
- [22]SHEN C.The Riemann problem for the chaplygin gas equations with a source term[J].Z Angew Math Mech,2016,96(6):681-695.
- [23]SUN M N.The exact Riemann solutions to the generalized chaplygin gas equations with friction[J].Communications in Nonlinear Science and Numerical Simulation,2016,36:342-353.
- [24]SHENG W C,ZHANG T.The Riemann problem for the transportation equations in gas dynamics[J].Mem Amer Math Soc,1999,137(654):1-77.
- [25]NEDELJKOV M,OBERGUGGENBERGER M.Interactions of delta shock waves in a strictly hyperbolic system of conservation laws[J].J Math Anal Appl,2008,344(2):1143-1157.
- [26]SHEN C,SUN M N.Stability of the Riemann solutions for a nonstrictly hyperbolic system of conservation laws[J].Nonlinear Anal TMA,2010,73(10):3284-3294.