两斑块间具有非对称脉冲扩散的带时滞的捕食食饵系统的分析(英文)Analysis for a Delayed Predator-prey System with Dissymmetric Impulse Dispersal between Two Patches
徐高,张龙
摘要(Abstract):
在研究两斑块间具有非对称脉冲扩散的带时滞的捕食食饵系统的问题中,利用脉冲微分方程的比较原理和一些分析技巧,得到了捕食者灭绝的正周期解全局吸引性的充分条件,建立了系统的持久性.
关键词(KeyWords): 非对称脉冲扩散;周期解;全局吸引性;持久性;时滞
基金项目(Foundation): Supported by the Natural Science Foundation of Xinjiang(2012211B07)
作者(Author): 徐高,张龙
参考文献(References):
- [1]Freedman H I.Single species migration in two habitats:persistence and extinction[J].Math Model,1987,8:778–780.
- [2]Beterra E,Fergola P,Tenneriello C.Ultimate boundedness of nonautonomous diffusive Lotka–Volterra patches[J].Math Biosci,1988,92:29–53.
- [3]Freedman H,Shukla J,Takeuchi Y.Population diffusion in a two-patch environment[J].Math Biosci,1989,95(1):111-123.
- [4]Zhang L,Teng Z.Permanence for a delayed periodic predator-prey model with prey dispersal in multi-patches and predator density-independent[J].Math Anal Appl,2008 338(1):175-193.
- [5]Cui J,Chen L.The effect of diffusion on the time varying logistic population growth[J].Comput Math Appl,1998,36:1-9.
- [6]Jiao J,Yang X,Cai S,Chen L.Dynamics analysis of a delayed predator-prey model with impulsive diffusion between two patches[J].Math Comput Simulat,2009,80:522-532.
- [7]Zhang L,Teng Z,DeAngelis D L,Ruan S.Single species models with logistic growth and dissymmetric impulse dispersal[J].Math Biosci,2013,241:188-198.
- [8]Shao Y.Analysis of a delayed predator-prey system with impulsive diffusion between two patches[J].Math Comput Modell,2010,52:120-127.
- [9]Fu X,Yan B,Liu Y.Introduction to Impulsive Differential Systems[M].Beijing:Science Press,2005.
- [10]Zhang L,Teng Z,Liu Z.Survival analysis for a periodic predator-prey model with prey impulsively unilateral diffusion in two patches[J].Appl Math Modell,2011,35:4243-4256.
- [11]Hui J,Chen L.A single species model with impulsiv diffusion[J].Acta Mathematicae Applicatae Sinica,2005,28(1):43-48.
- [12]Liu Z,Teng Z,Zhang L.Two patches impulsive diffusion periodic single-species logistic model[J].Int J Biomath,2010,3(1):127-141.
- [13]Teng Z,Chen L.Permanence and extinction of periodic predator-prey systems in a patchy environment with delay[J].Nonlinear Anal RWA,2003,4:335-364.
- [14]Chen S,Zhang J,Yong T.Existence of positive periodic solution for nonautonomous predator-prey system with diffusion and time delay[J].Comput Appl Math,2003,159:375-386.
- [15]Bainov D,Simeonov P.Impulsive Differential Equations:Periodic Solution and Applications[M].London:Longman,1993.
- [16]Freedman H I,Takeuchi Y.Global stability and predator dynamics in a model of prey dispersal in a patchy environment[J].Nonlinear Anal,1989,13:993-1002.
- [17]Kuang Y,Takeuchi Y.Predator-prey dynamics in models of prey dispersal in two-patch environments[J].Math Biosci,1994,120:77-98.
- [18]Teng Z,Lu Z.The effect of dispersal on single-species nonautonomous dispersal models with delays[J].Math Biol,2001,42:439-454.
- [19]Cui J,Takeuchi,Lin Z.Permanence and extinction for dispersal population systems[J].Math Anal Appl,2004,298:73-93.
- [20]Wang W,Chen L.Global stability of a population dispersal in a two-patch environment[J].Dynam Syst Appl,1997,6:207-216.
- [21]Chewning W.Migratory effects in predatation prey systems[J].Math Biosci,1975,23:253-262.
- [22]Hirstova S C,Bainov D D.Existence of periodic solutions of nonlinear systems of differential equations with impulsive effect[J].Math Anal Appl,1987,125:192-202.
- [23]Jiao J,Pang G P,Chen L,et al.A delayed stage-structured predator–prey model with impulsive stocking on prey and continuous harvesting on predator[J].Appl Math Comput 2008,195(1):316-325.
- [24]Freedman H I,Takeuchi Y.Predator survival versus extinction as a function of dispersal in a predator-prey model with patchy environment[J].Appl Anal 1989,31:247-266.
- [25]Mchich R,Auger P,Poggiale J.Effects of density-dependent migrations on stability of a two-patch predator–prey model[J].Math Biosci,2007,210:335-354.
- [26]Wang W,Ma Z.Asymptotic behavior of a predator–prey system with diffuson and delays[J].Math Anal Appl,1997,206:191-204.
- [27]Xu R,Ma Z E.The effect of dispersal on the permanence of a predator-prey system with time delay[J].Nonlinear Anal RWA,2008,9:354-369.
- [28]Xu R,Chaplain M,Davidson F A.Periodic solution of a Lotka-Volterra predator-prey model with dispersion and time delays[J].Appl Math Comput,2004,148:537-560.
- [29]Tang S Y,Chen L S.The periodic predator-prey Lotka-Volterra model with impulsive effect[J].Mech Med Biol,2002,2:267-296.
- [30]Bainov D D,Simeonov P S.System with Impulsive Effect:Stability,Theory and Applications[M].New York:John Wiley and Sons,1989.