基于约束局部模型的全自动桡骨分割Fully Automatic Segmentation of the Radius Using Constrained Local Model
刘洁琳,刘杰,朱翔宇
摘要(Abstract):
骨龄是衡量少年儿童骨骼发育程度的重要指标.桡骨,作为骨龄评估中的特征骨块,其年龄对骨龄的预测具有重要意义.为预测桡骨骨龄首先需要准确分割桡骨,本文通过基于随机森林回归投票的约束局部模型算法,通过多形状模板的建立,实现桡骨的自动分割,为后续桡骨骨龄的预测提供可靠的依据.
关键词(KeyWords): 桡骨;骨龄;随机森林回归投票;约束局部模型
基金项目(Foundation): 国家自然科学基金(81571836)
作者(Author): 刘洁琳,刘杰,朱翔宇
DOI: 10.13568/j.cnki.651094.2017.02.015
参考文献(References):
- [1]Gilsanz V,Ratib O.Hand Bone Age[M].Berlin:Springer Berlin Heidelberg,2005.
- [2]Niemeijer M,van Ginneken B,Maas C,et al.Assessing the skeletal age from a hand radiograph:Automating the TannerWhitehouse method[J].Proc Med Imaging,2003,5032:1197-1205.
- [3]Cootes TF,Hill A,Taylor CJ,et al.The Use Of Active Shape Models for Locating Structures in Medical Images[J].Image Vision Comput,1994,12(6):355-365.
- [4]Milborrow S,Nicolls F.Active Shape Models with SIFT Descriptors and MARS[J].Proc VISAPP,2014,5-12.
- [5]Gertych E,Pietka E,Liu BJ.Segmentation of regions of interest and post-segmentation edge location improvement in computer-aided bone age assessment[J].Pattern Anal Appl,2007,10:115-123.
- [6]Thodberg HH,Kreiborg S,Juul A,et al.The Bone Xpert Method for Automated Determination of Skeletal Maturity[J].IEEE Trans Med Imaging,2009,1(28):52-66.
- [7]Tresadern P,Sauer P,Cootes T.Additive update predictors in Active Appearance Models[J].Proc Brit Mach Vis Conf,2010,20:1-20.
- [8]Sauer P,Cootes T,Taylor C.Accurate regression procedures for Active Appearance Models[J].Proc Brit Mach Vis Conf,2011,1(6):681-685.
- [9]Adeshina SA,Cootes TF,Adams JE.Evaluating different structures for predicting skeletal maturity using statistical appearance models[J].Skeletal Maturity,2009.
- [10]Lindner C,Bromiley PA,Lonita MC,et al.Robust and Accurate Shape Model Matching Using Random Forest RegressionVoting[J].IEEE Trans Pattern Anal Mach Intell,2015,37(9):1862-1874.
- [11]Christinacce D,Cootes T.Feature Detection and Tracking with Constrained Local Models[J].BMVC,2006,41:929-938.
- [12]Cristinacce D,Cootes T.Automatic feature localization with Constrained Local Models[J].J PATTERN RECOGN,2008,41(10):3054-3067.
- [13]Criminisi A,Shotton J,Robertson D,et al.Regression forests for efficient anatomy detection and localization in CT studies[J]//in Medical Computer Vision Workshop[J].Springer Lecture Notes in Computer Science,2010,6533(8):106-117.
- [14]Linder C,Thiagarajah S,Wilkinson JM,et al.Accurate fully automatic femur segmentation in pelvic radiographs using regression voting[J].MICCAI,2012,15(2):353-360.
- [15]李新华,赵娟,袁振宁,等.基于k-余弦曲率和WSVM的骨龄识别方法[J].计算机应用与软件,2015,32(8):158-161.
- [16]Viola P,Jones M.“Rapid object detection using a boosted cascade of simple features,”in CVPR[J].IEEE Press,2001,1:511-518.
- [17]Yang H,Patras I.Sieving regression forest votes for facial feature detection in the wild[C].Proc Int Conf Comput Vis,2013:1936-1943.
- [18]Linder C,Thiagarajah S,Wilkinson JM,et al.Fully Automatic Segmentation of the Proximal Femur Using Random Forest Regression Voting[J].IEEE Trans Med Imaging,2013,32(8):1462-1472.
- [19]张绍岩.中国人手腕部骨龄标准——中华05及其应用[M].北京:科学出版社,2015:25-75.
- [20]Cristinacce D,Cootes T.Facial feature detection and tracking with automatic template selection[C].Proceedings of the7thInternational Conference on Automatic Face and Gesture Recognition,2006:429-434.
- [21]王亚辉,王子慎,魏华,等.基于支持向量机实现骨骺发育分级的自动化评估[J].法医学杂志,2014,30(6):422-426.
- [22]D′eniz O,Bueno G,Salido J,et al.Face recognition using Histograms of Oriented Gradients[J].PATTERN RECOGN LETT,2011,32(12):1598-1603.
- [23]Martins P,Rui C,Henriques HF,et al.Discriminative bayesian active shape models[J].Springer Berlin Heidelberg,2012,7574(1):57-70.