非交换Orlicz空间的个体遍历定理(英文)Individual Ergodic Theorems for Noncommutative Orlicz Space
萨吉代姆·吐尔洪,吐尔德别克
摘要(Abstract):
设(M,τ)是半有限vonNeumann代数,Φ是N函数.证明了非交换Orlicz空间LΦ(M)的个体遍历定理.
关键词(KeyWords): 非交换Orlicz空间;个体遍历定理;依测度一致等度连续
基金项目(Foundation): Supported by Natural Science Foundation of the Xinjiang Uygur Autonomous Region(2013211A001)
作者(Author): 萨吉代姆·吐尔洪,吐尔德别克
参考文献(References):
- [1]Junge M,Xu Q.Noncommutative maximal ergodic inequalities[J].Amer Math Soc,2007,20(2):385-439.
- [2]Yeadon F J.Ergodic theorems for semifinite Von Neumann algebras I[J].London Math Soc,1977,16(2):326-332.
- [3]Litvinov s.Uniform equicontinuity of sequences of measurable operators and non-commutative ergodic theorems[J].Proc Amer Math Soc,2012,4(140):2401-2409.
- [4]许全华,吐尔德别克,陈泽乾.算子代数与非交换Lp空间引论[M].北京:科学出版社,2009:95-127.
- [5]Rao M,Ren Z.Application of Orlicz Spaces[M].New York:Marcel Dekker Inc,2002.
- [6]Chilin V,Litvinov S,Skalski A.A few remarks in non-commutative ergodic theory[J].Operator Theory,2005,53(2):331-350.
- [7]Bekjan T N,Chen Z.Interpolation andΦ-moment inequalities of noncommutative martingales[J].Probab Theory Relat Fields,2012,152:179-206.
- [8]Fack T,Kosaki H.Generalized s-numbers ofτ-measurable operators[J].Pacific J Math,1986,123:269-300.
- [9]Fack T.Sur la notion de valeur characteristique[J].Operator Theory,1982,7:307-333.