A_n型非退化仿射Hecke代数的Gr?bner-Shirshov基Gr?bner-Shirshov Basis of Non-Degenerate Affne Hecke Algebras of Type A_n
木娜依木·迪里夏提,阿布都卡的·吾甫
摘要(Abstract):
我们讨论了A_n-型非退化仿射Hecke代数的Gr?bner-Shirshov基和线性基.构造代数的Gr?bner-Shirshov基的方法主要有两种:一是通过计算合成;另一种方法是用线性基和钻石合成引理.因为我们还不知道A_n-型非退化仿射Hecke代数的线性基,因此我们使用第一种方法,也就是先通过计算合成给出A_n-型非退化放射Hecke代数的Gr?bnerShirshov基,然后用此Gr?bner-Shirshov基和结合代数的钻石合成引理,给出A_n型非退化仿射Hecke代数的一组线性基.
关键词(KeyWords): Gr?bner-Shirshov基;合成运算;An型非退化仿射Hecke代数
基金项目(Foundation): 国家自然科学基金项目(11361056)
作者(Author): 木娜依木·迪里夏提,阿布都卡的·吾甫
DOI: 10.13568/j.cnki.651094.2019.03.005
参考文献(References):
- [1]BUCHBERGER B.An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal[D].Innsbruck:University of Innsbruck,1965.
- [2]BERGMAN G M.The diamond lemma for ring theory[J].Adv in Math,1978,29:178-218.
- [3]SHIRSHOV A I.Some algorithmic problems for lie algebras[J].Sigsam Bull,1999,33(2):3-6.
- [4]BOKUT L A.Imbeddings into simple associative algebras[J].Algebra i Logika,1976,15:117-142.
- [5]古丽沙旦木·玉奴斯,阿不都卡的·吾甫,孟吉翔.B3型量子群的Gelfand-Kirillov维数[J].新疆大学学报(自然科学版),2016,33(4):399-406.Gulshadam Yunus,Abdukader Obul,MENG J X.The Gelfand-Kirillov dimension of quantum group of type B3[J].Journal of Xinjiang University(Natural Science Edition),2016,33(4):399-406.
- [6]MACDONALD I G.Affine hecke algebras and orthogonal polynomials[M].Cambridge:Cambridge University Press,2003.
- [7]BOKUT L A,CHEN Y.Groebner-Shirshov bases:some new results[C].Proceedings of the Second International Congress in Algebra and Combinatorics,Guangzhou,2007:35-56.
- [8]ARIKI S,KOIKE K.A Hecke algebra of(Z/r Z)/Sn and construction of its irreducible representations[J].Adv Math,1994,106:216-243.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享