P—C.算子P—C. OPERATORS
阮吉寿,葛诚
摘要(Abstract):
<正> 设X为Banach空间,设{x_n}_(n=1)~∞为X中的无穷序列(其中允许{x_n}_(n=1)~∞中只有有限项不为0),称之为l_p(X)—序列,如果(sum from n=1 to ∞‖x_n‖~p)~(1/p)<+∞。用l_p(X)表示所有l_p(X)—序列所成的线性空间。特别当p=+∞时修改为:(?)‖x_n‖<+∞。l_p(X)按范数:‖{x_p}_(n=1)~∞‖_p=(sum from n=1 to ∞‖x_n‖~p)~(1/p) (1≤p<+∞)和‖{x_n}_(n=1)~∞‖_∞=(?)‖x_n‖
关键词(KeyWords): sl—序列;p—可和算子;P—C_0算子
基金项目(Foundation):
作者(Author): 阮吉寿,葛诚
参考文献(References):
- 1 J. Lindenstrauss and A.Pelezynski, Absolutely summing Operators in L_φ-spaces and their applications, studia Math (1968) .
- 2 Lecture notes in Mathematics, 852#.
- 3 S.Goldberg, Unbounded linear operators (1966) .
- 4 J. Lindenstrauss and L. Tzafriri, Classical Bannch spaces I, Springer-verleg (1977) .
- 5 J.S. Morrell and J.R.Retherford, P-trvial Banach spaces, studia Math. T, XLIII (1972) .