各向异性分数次积分算子的加权估计(英文)A Weighted Estimates of Anisotropic Fractional Integral Operators
张惠;齐春燕;李宝德;
摘要(Abstract):
设A是一个扩张矩阵,α∈[0,1),p∈(1,1/α)且q:=(1/p-α)-1,如果非负函数v满足各向异性的Muckenhoupt Ap,q(A)权条件,那么各向异性的分数次极大函数f*α从Lp(Rn,vp)到Lq(Rn,vq)是有界的.作为应用,作者进一步证明了v∈Ap,q(A)当且仅当各向异性分数次积分算子Tα,A从Lp(Rn,vp)到Lq(Rn,vq)是有界的,这些结论是Muckenhoupt和Wheeden的结果在各向异性情形下的推广(Trans Amer Math Soc,192:261-274,1974).
关键词(KeyWords): 各向异性;扩张矩阵;Muckenhoupt权;分数次积分算子;分数次极大函数
基金项目(Foundation): supported by the Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2015211C283)
作者(Authors): 张惠;齐春燕;李宝德;
DOI: 10.13568/j.cnki.651094.2017.01.007
参考文献(References):
- [1]Muckenhoupt B,Wheeden R.Weighted norm inequalities for fractional integrals[J].Trans Amer Math Soc,1974,192:261-274.
- [2]Welland G.Weighted norm inequalities for fractional integrals[J].Proc Amer Math Soc,1975,51:143-148.
- [3]Hardy G H,Littlewood J E.Some properties of fractional integrals[J].Math Z,1928,27:565-606.
- [4]Sobolev S.On a therem in functional analysis[J].Amer Math Soc Transl,1963,34:39-68.
- [5]Ding Y,Lan S.Fractional integral operators on anisotropic Hardy spaces[J].Integral Equations Operator Theory,2008,60:329-356.
- [6]Lan S,Lee M,Lin C.Fractional integral operators on weighted anisotropic Hardy spaces[J].J Operator Theory,2012,68:3-17.
- [7]Coifman R R,Weiss G.Analyse Harmonique Non-commutative sur Certains Espaces Homog`enes[M].Berlin-New York:Springer-Verlag,1971.
- [8]Coifman R R,Weiss G.Extensions of Hardy spaces and their use in analysis[J].Bull Amer Math Soc,1977,83:569-645.
- [9]Bownik M.Anisotropic Hardy spaces and wavelets[J].Mem Amer Math Soc,2003,164:1-122.
- [10]Str¨omberg J-O,Torchinsky A.Weighted Hardy Spaces[M].Berlin:Springer-Verlag,1989.
- [11]Grafakos L.Modern Fourier Analysis,Second edition[M].New York:Springer,2009.
- [12]Zygmund A.Trigonometric Series 2nd ed[M].New York:Cambridge University Press,1959.