向量值算子在空间上的有界性(英文)Boundedness of Vector-valued Operators on Herz-Morrey Spaces
王新霞
摘要(Abstract):
研究了向量值 Hardy-Litlewood算子在 Herz-Morrey及弱 Herz-Morrey空间上的有界性 .应用这些结果 ,得到了一大类定义在 Rn 上的次线性算子向量值不等式
关键词(KeyWords): Herz空间;Herz-Morrey空间;弱Herz-Morrey空间;次线性算子;向量值算子
基金项目(Foundation): ProjectsupportedbyNSFC(No.10261007),andpartiallysupportedbySFofXinjiangUniversity
作者(Author): 王新霞
参考文献(References):
- [1]AndersenK F,JohnR T.Weighted inequalities forvector-valued maximal functions and singularintegrals[J].Studia.Math,1980,69:19-31.
- [2]FerffermanC,steinE M.some maximal inequalities[J].AmerJofMath,1971,93:107-115.
- [3]BeurlingA.Construction and analysis of some convolution alegebras[J].AnnInstFourierGrenoble,1964,14:1-32.
- [4]HerzC.Lipschilz spaces andBernstein's theorem on absoluted convergentFourier transforms[J].MathMechJ,1968,18:283-324.
- [6]C.B.Morrey.Jr,On the solution of quasi-linear elliptic p artial differential equation[J].Trans.Amer.Math.Soc,1938,43:126-166.
- [7]LiX,YangD.Boundedness of some sublinear operators onHerz spaces[J].IllinoisJMath,1996,40:484-501
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享