Able群上Cayley图的哈密顿性(英文)Hamiltonian Properties of Cayley Graphs on Abelian Groups
马合木提·阿合力别克
摘要(Abstract):
设 G是群 ,S是 G的不含单位元的子集 ,满足 S=S1 ,G的相对于 S的 Cayley图 ,是一个以 G为顶点集的无向图 ,对 G的任意两上元 x和 y,x和 y在 C( G,S)中相邻 ,当且今当 x1 y∈ S.本文中我们得到了以下结论 :( i)设 G是阶至少为 2的有限 Abel群 .S G\{ 0 }且 S=S1 ,则 C( G,S)中每个二长路都包含在一个哈密顿圈中 .( ii)设 G是可数无限 Abel群 ,S G\{ 0 }满足 S=S1 和 | S|≥ 4 .则 C( G,S)中每个长为 2的路含在一条双向哈密顿路上 .( iii)有限 Abel群上围长为 3,阶数至少为 3的连通 Cayley图是泛圈的 .( iv)设 G是可数无限 Abel群 ,S G\{ 0 }满足 S=S1和 | S|≥ 4 .若 girth[C( G,S) ]=3,则 C( G,S)是泛圈的 .
关键词(KeyWords): Cayley图;Abel群;Pancycli
基金项目(Foundation):
作者(Author): 马合木提·阿合力别克
参考文献(References):
- [1]CoopermanG,FinkelsteinL.New methods forusingCayleyGraphs in interconnection networks[J].DiscreteAppliedMath,1992,37/38:95-118.
- [2]Lakshminrahan,JwoJS,DhallS K,Symmetry in interconnection networks based onCayley graphs of permutationgroups:A survery[J].ParallelComputing,1993,(19):361-407.
- [3]CurranS J,GallianJA,Hamiltonian cycles and paths inCayley graphs andDigraphs-A survey[J].DiscreteMath,1996,(19):1-18.
- [4]ChenC C,QuimpoN F.On stronglyHamiltonian abelian groups[A].McaveneyK L,ed.CombinatorialMathematics[C].LectureNotes884,Berlin:Springer,1981.23-34.
- [5]MengJixiang,Luo xinmi.Cayley graphs of abelian groups are edge hamiltonian[J].JXinjiangUniversity,1998,15(3):1-4.
- [6]BogdanowiczZ R.Pancyclicity of connected circulant graphs[J].JGraphTheory,1996(2):167-174.
- [7]BondyJA,MurtyU SR.GraphTheory withApplications[M].NewYork:TheMacmillanPress,1976.
- [8]BiggsN L.AlgebraicGraphTheory[M].CambridgeUniversityPress,1974.
- [9]MengJixiang,XuMingyao.On theisomorphism problem ofCayley graphs of abelian groups[J].DiscreteMath,1998(187):161-169.
- [10]MengJixiang.Hamiltonian cycles in2-generatedCayley digraphs of abelian groups[J].LectureNotes inComputerScience(Springer),1995(959):384:-387.
- [11]YangQ F,BurkardR E,CelaE,WoegingerG J.Hamiltonian cycles inCirculantDigraphs with twoStripes[J].DiscreteMath,1997(176):233-254.
- [12]MengJixiang,HuangQiongxiang.AlmostallCayley graphshave diameter2[J].DiscreteMath,1998(178):267-269.
- [13]HamidouneY O.Subsets with small sums in abelian groupsI:theVosper property[J].EuropJ.Combin4.1997,541-556.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享