关于τ-可测算子的依测度收敛性(英文)On Convergence in the Measure Topology of τ-measurable operators
吐尔德别克,波拉提汗
摘要(Abstract):
文献 [1]中得到了 τ-可测算子序列依测度拓扑收敛的判别法 .我们给出了它的一些应用
关键词(KeyWords): τ-可测算子;测度拓扑;von Neaumann代数
基金项目(Foundation):
作者(Author): 吐尔德别克,波拉提汗
参考文献(References):
- [1]BekjanT N.On convergence in the measure topology[J].ActaAnalysisFunctionalisApplicata.2004,1(6):5-9.
- [2]BhatiaR.MatrixAnalysis[M].GraduateTexta inMathematics169,Springer,1997.
- [3]FackT.KosakiH.Generalized s-numbers ofτ-measurable operators[J].PacJMath,1986,123:269-300.
- [4]HansenF.An operator inequality[J].MathAnn,1980,246:249-250.
- [5]KosakiH.On the continuity of the map→|| from the predual of aW*-algebra[J].JFunctAnal,1984,59:123-131.
- [6]KosakiH.Applicationsof uniform convexity of non-commutativeLpspaces[J].TransAmerMathSoc,1984,283:265-282.
- [7]NelsonE.Notes on non-commutative integration[J].J.Funct.Anal,1974,15:103-116.
- [8]SegalIE.A non-commutative extension of abstract integration[J].Ann ofMath,1953,57:401-457.
- [9]TakesakiM.Theory ofOperatorAlgebrasI[M].Springer,Berlin-Heidelberg-NewYork,1979