曲面上对流-扩散-反应方程的两种稳定化混合有限元方法的数值比较Numerical Comparison of Two Stabilized Mixed Finite Element Methods for Convection-Diffusion-Equations on Surfaces
金孟晴,冯新龙,何银年
摘要(Abstract):
研究了曲面对流-扩散-反应方程的有限元逼近问题.通过引入不同形式的中间变量,分别将原方程转化为等价的一阶混合形式.运用混合有限元的思想,直接使用低阶有限元对(P_1-P_1)近似的混合稳定化方法.该方法不仅满足inf-sup条件,而且对于对流占优情况所产生的非物理震荡,可以将其有效地捕捉.最后,数值实验结果表明,测试的收敛结果与已知理论一致.
关键词(KeyWords): 曲面对流-扩散-反应方程;曲面混合有限元方法;稳定化方法;inf-sup条件
基金项目(Foundation): 新疆维吾尔自治区重点实验室开放课题(2020D04002)
作者(Author): 金孟晴,冯新龙,何银年
DOI: 10.13568/j.cnki.651094.651316.2021.09.28.0003
参考文献(References):
- [1]ELMAN H C,SILVESTER D J,WATHEN A J.Finite elements and fast iterative solvers:with applications in incompressible fuid dynamics[J].Mathematics of Computation,2006,75(255):1595-1596.
- [2]ROOS H G,STYNES M,TOBISKA L.Robust numerical methods for singularly perturbed differential equations:convectiondiffusion-reaction and fow problems[M].Berlin,Heidelberg:Springer Science and Business Media,2008.
- [3]DZIUK G.Finite elements for the Beltrami operator on arbitrary surfaces[J].Lecture Notes in Mathematics,1988,1357:142-155.
- [4]WANG X,DU Q.Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches[J].Journal of Mathematical Biology,2008,56:347-371.
- [5]ELLIOT C M,STINNER B.A surface phase field model for two-phase biological membranes[J].SIAM Journal on Applied Mathematics,2010,70(8):2904-2928.
- [6]BARREIRA R,ELLIOTT C M,MADZVAMUSE A.The surface finite element method for pattern formation on evolving biological surfaces[J].Journal of Mathematical Biology,2011,63(6):1095-1119.
- [7]LACITIGNOLA D,BOZZINI B,FRITTELLI M.Turing pattern formation on the sphere for a morphochemical reaction-diffusion model for electrodeposition[J].Communications in Nonlinear Science and Numerical Simulation,2017,48:484-508.
- [8]FRANCA L P,FARHAT C.Bubble functions prompt unusual stabilized finite element methods[J].Computer Methods in Applied Mechanics and Engineering,1995,123:299-308.
- [9]FRANCA L P,FREY S L,HUGHES T J R.Stabilized finite element methods:application to the advective-diffusive model[J].Computer Methods in Applied Mechanics and Engineering,1992,95:253-276.
- [10]HUGHES T J R,BROOKS A N.Streamline-upwind/Petrov-Galerkin methods for advection dominated flows[J].Proceedings of the Third International Conference on Finite Element Methods in Fluid Flow,1980,2:283-292.
- [11]MASUD A,KHURRAM R.A multiscale/stabilized finite element method for the advection-diffusion equation[J].Computer Methods in Applied Mechanics and Engineering,2004,193:1997-2018.
- [12]TEZDUYAR T E,PRAK Y J.Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations[J].Computer Methods in Applied Mechanics and Engineering,1986,59:307-325.
- [13]OLSHANSKII,MAXIM A,REUSKEN.A stabilized finite element method for advection-diffusion equations on surfaces[J].IMA Journal of Numerical Analysis,2013,34(2):732-758.
- [14]XIAO X,ZHAO J,FENG X.A layers capturing type H-adaptive finite element method for convection-diffusion-reaction equations on surfaces[J].Computer Methods in Applied Mechanics and Engineering,2020,361:112792.
- [15]JIN M,FENG X,WANG K.Gradient recovery-based adaptive stabilized mixed FEM for the convection-diffusion-reaction equation on surfaces[J].Computer Methods in Applied Mechanics and Engineering,2021,380(255):113798.
- [16]GARVIE M R.Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB[J].Bulletin of Mathematical Biology,2007,69:931-956.
- [17]HANSBO P,MATS G L,ANDR′E M.A stabilized cut finite element method for the Darcy problem on surfaces[J].Computer Methods in Applied Mechanics and Engineering,2017,326:298-318.