非均匀电势和子晶格势调控下扶手型石墨烯纳米带的电子特性Manipulating Electronic Properties of the Armchair Graphene Nanoribbons by Nonuniform Electric Potential and Sublattice Potential
姜莉锋;徐雷;张军;
摘要(Abstract):
扶手型石墨烯纳米带,由于其纳米带宽度的差异,可以分为金属型与半导体型.本文主要研究非均匀电势和子晶格势作用下扶手型石墨烯纳米带的电子特性.我们发现当只有子晶格势作用时,不同类型的扶手型石墨烯纳米带的能隙随子晶格势的增大基本呈线性增长.然而不同类型的扶手型石墨烯纳米带的能隙随非均匀电势的增大却呈现出不同的变化趋势.对于金属型的情况,在非均匀电势和子晶格势共同调控下,可以实现能隙的打开与闭合.最后,在纳米带上施加垂直磁场,两端电导表现出有趣的量子演化行为.
关键词(KeyWords): 非均匀电势;子晶格势;扶手型石墨烯纳米带
基金项目(Foundation): 国家自然科学基金(11404276);国家自然科学基金(11564038);; 新疆大学博士研究生基金(BS130112)
作者(Authors): 姜莉锋;徐雷;张军;
DOI: 10.13568/j.cnki.651094.2018.03.009
参考文献(References):
- [1]Novoselov K S,Geim A K,Morozov S V,et al.Electric Field Effect in Atomically Thin Carbon Films[J].Science,2004,306,666-669.
- [2]Raza H.Graphene Nanoelectronics[M].Springer Berlin Heidelberg,GER,2012:17-50.
- [3]Castro Neto A H,Guinea F,Peres N M R,et al.The electronic properties of graphene[J].Reviews of modern physics,2009,81:109-162.
- [4]Andre K Geim.Nobel Lecture:Random walk to grapheme[J].Reviews of modern physics,2011,83:851-862.
- [5]Bunch J S,van der Zande A M,Verbridge S S,et al.Electromechanical resonators from graphene sheets[J].Science,2007,315(5811):490-493.
- [6]Lee C,Wei X,Kysar JW,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
- [7]Kuzmenko A B,van Heumen E,Carbone F,et al.Universal Optical Conductance of Graphite[J].Physical Review Letters,2008,100:117401.
- [8]Nair R R,Blake P,Grigorenko A N,et al.Fine Structure Constant Defines Visual Transparency of Graphene[J].Science,2008,320(5881):1308-1308.
- [9]Han M Y,Ozyilmaz B,Zhang Y,et al.Energy band-gap engineering of graphene nanoribbons[J].Physical Review Letters,2007,98(20):206805.
- [10]Yang L,Park C H,Son YW,et al.Quasiparticle energies and band gaps in graphene nanoribbons[J].Physical Review Letters,2007,99(18):186801.
- [11]Gunlycke D,White C T.Tight-binding energy dispersions of armchair-edge graphene nanostrips[J].Physical Review B,2008,77(11):5116.
- [12]Li Z,Qian H,Wu J,et al.Role of symmetry in the transport properties of graphene nanoribbons under bias[J].Physical Review Letters,2008,100(20):206802.
- [13]Ritter K A,Lyding J W.The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons[J].Nature Materials,2009,8(3):235-242.
- [14]Son Y W,Cohen M L,Louie S G.Energy Gaps in Graphene Nanoribbons[J].Physical Review Letters,2006,97(21):216803.
- [15]Long M Q,Tang L,Wang D,et al.Theoretical Predictions of Size-Dependent Carrier Mobility and Polarity in Graphene[J].Journal of the American Chemical Society,2009,131(49):17728-17729.
- [16]Kane C L,Mele E J.Quantum spin Hall effect in graphene[J].Physical Review Letters,2005,95(22):226801.
- [17]Yu Xiao-Hui,Xu Lei,Zhang Jun.Topological state engineering by in-plane electric field in graphene nanoribbon[J].Physical Review A,2017,381:2841-2844.
- [18]Datta S.Electronic Transport in Mesoscopic Systems[M].Cambridge University Press,Cambridge,UK,1995:48-170.
- [19]Zhang X L,Xu L,Zhang J.Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene[J].Journal of Physics:Condensed Matter,2017,29(18):185502.
- [20]Sugai Y.Energy gaps in graphene nanoribbons[J].Physical Review Letters,2006,97(21):216803.