3维非定常Navier-Stokes方程组高效全离散有限元方法研究进展Research Progress in the Highly Efficient Fully Discrete Finite Element Method for Solving the 3D Time-Dependent Navier-Stokes Equations
何银年,冯新龙
摘要(Abstract):
针对数值求解3维非定常Navier-Stokes方程组时面临的不可压缩条件、非线性和长时间积分性等困难,讨论了能够克服这些困难的高效全离散有限元方法的研究现状和最新研究成果.此外,也阐述了求解3维非定常Navier-Stokes方程组的有限元空间离散解的稳定性、误差估计和高效全离散有限元解的最优误差估计.
关键词(KeyWords): Navier-Stokes方程组;高效有限元方法;稳定性;最优误差估计
基金项目(Foundation): 国家自然科学基金(11771348;12001466;12071406;U19A2079)
作者(Author): 何银年,冯新龙
DOI: 10.13568/j.cnki.651094.651316.2022.04.09.0001
参考文献(References):
- [1]TEMAM R.Navier-Stokes equations:theory and numerical analysis[M].Amsterdam,New York,Oxford:Springer-Verlag,1984.
- [2]GIRAULT V,RAVIART P.Finite element approximation of the Navier-Stokes equations[M].Berlin,New York:Springer-Verlag,1981.
- [3]MARION M,TEMAM R.Navier-Stokes equations:theory and approximation[J].Handbook of Numerical Analysis,1998,6:503-689.
- [4]HEYWOOD J G,RANNACHER R.Finite element approximation of the nonstationary Navier Stokes problem,I:regularity of solutions and second-order error estimates for spatial discretization[J].SIAM Journal on Numerical Analysis,1982,19(2):275-311.
- [5]HEYWOOD J G,RANNACHER R.Finite element approximation of the nonstationary Navier Stokes problem,II:stability of solutions and error estimates uniform in time[J].SIAM Journal on Numerical Analysis,1986,23(4):750-777.
- [6]HEYWOOD J G,RANNACHER R.Finite element approximation of the nonstationary Navier-Stokes problem,III:smoothing property and higher order error estimates for spatial discretization[J].SIAM Journal on Numerical Analysis,1988,25(3):489-512.
- [7]HEYWOOD J G,RANNACHER R.Finite-element approximation of the nonstationary Navier-Stokes problem,IV:error analysis for second-order time discretization[J].SIAM Journal on Numerical Analysis,1990,27(2):353-384.
- [8]HOPF J.On nonlinear partial different equations:lecture series of the symposium on partial different equations[M].Berkeley:The Univ of Kansas,1957:1-29.
- [9]LADYZHENSKAYA O A.The mathematical theory of viscous incompressible fow[M].New York:Gordon and Breach Science Publishers,1969.
- [10]LERAY J.Etude de diverses′equations int′egrales nonlin′eaires et de quelques probl`eemes que pose l’hydrodynamique[J].Journal de Mathématiques Pures et Appliquées,1933,12:1-82.
- [11]LERAY J.Essai sur les mouvements plans d’un liquide visqueux que limitent des parois[J].Journal de Mathématiques Pures et Appliquées,1934,13:331-418.
- [12]LERAY J.Essai sur le mouvement d’un liquide visquex emplissant l’espace[J].Acta Math,1934,63:193-248.
- [13]李开泰,黄艾香,黄庆怀.有限元方法及其应用[M].北京:科学出版社,2006.
- [14]李开泰,马逸尘.偏微分方程Hilbert空间方法[M].北京:科学出版社,2008.
- [15]HE Y.A fully discrete stabilized finite-element method for the time-dependent Navier-Stokes problem[J].IMA Journal of Numerical Analysis,2003,23(4):665-691.
- [16]LI J,HE Y,CHEN Z.A new stabilized finite element method for the transient Navier-Stokes equations[J].Computer Methods in Applied Mechanics and Engineering,2007,197(1/2/3/4):22-35.
- [17]NORBURN S,SILVESTER D.Stabilised vs.stable mixed methods for incompressible fow[J].Computer Methods in Applied Mechanics and Engineering,1998,166(1/2):131-141.
- [18]LABOVSKY A,LAYTON W J,MANICA C C,et al.The stabilized extrapolated trapezoidal finite-element method for the Navier-Stokes equations[J].Computer Methods in Applied Mechanics and Engineering,2009,198(9/10/11/12):958-974.
- [19]ALLENDES A,BARRENECHEA G R,NOVO J.A divergence-free stabilized finite element method for the evolutionary NavierStokes equations[J].SIAM Journal on Scientific Computing,2021,43(6):A3809-A3836.
- [20]LEDERER P L,LEHRENFELD C,SCH¨OBERL J.Divergence-free tangential finite element methods for incompressible fows on surfaces[J].International Journal for Numerical Methods in Engineering,2020,121(11):2503-2533.
- [21]HECHT F.Construction of a basis at free divergence in finite element and application to the Navier-Stokes equations[J].Numerical solutions of nonlinear problems(Rocquencourt,1983),INRIA,Rocquencourt,1984,65:284-297.
- [22]TUREK S.Tools for simulating nonstationary incompressible fow via discretely divergence-free finite element models[J].International Journal for Numerical Methods in Fluids,1994,18(1):71-105.
- [23]LI B,MA S,WANG N.Second-order convergence of the linearly extrapolated Crank-Nicolson method for the Navier-Stokes equations with H1initial data[J].Journal of Scientific Computing,2021,88(3):1-20.
- [24]HE Y.Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations[J].SIAM Journal on Numerical Analysis,2003,41(4):1263-1285.
- [25]HE Y,SUN W.Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations[J].Mathematics of Computation,2007,76(257):115-136.
- [26]HE Y,SUN W.Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations[J].SIAM Journal on Numerical Analysis,2007,45(2):837-869.
- [27]TONE F.Error analysis for a second order scheme for the Navier-Stokes equations[J].Applied Numerical Mathematics,2004,50(1):93-119.
- [28]ASCHER U M,RUUTH S J,WETTON B T R.Implicit-explicit methods for time-dependent partial differential equations[J].SIAM Journal on Numerical Analysis,1995,32(3):797-823.
- [29]VARAH J M.Stability restrictions on second order,three level finite difference schemes for parabolic equations[J].SIAM Journal on Numerical Analysis,1980,17(2):300-309.
- [30]JOHNSTON H,LIU J G.Accurate,stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term[J].Journal of Computational Physics,2004,199(1):221-259.
- [31]CIARLET P G.The finite element method for elliptic equations[M].Amsterdam:North-Holland Publishing,1978.
- [32]BOFFI D,BREZZI F,FORTIN M.Mixed finite element methods and applications[M].Berlin,Heidelberg:Springer-Verlag,2013.
- [33]GIRAULT V,RAVIART P A.Finite element methods for Navier Stokes equations[M].New York,Berlin Heidelberg:SpringerVerlag,1986.