一个高效的无双线性对环签名An Efficient Ring Signature without Bilinear Pairing
巫朝霞,张瑛瑛
摘要(Abstract):
环签名是一个不具有任何管理者的类群签名,它具有保护签名者身份的作用.本文,我们利用Schnorr签名思想设计出一个高效的环签名方案,并给出具体算法.因为具有Schnorr签名方案的特点,对比发现此方案在计算效率上比多数环签名方案更高效、更安全.在随机预言模型下证明了该方案的不可伪造性以及无条件匿名性,其在电子商务应用中具有广泛的前景.
关键词(KeyWords): 环签名;公钥密码系统;双线性对;随机预言模型
基金项目(Foundation): 新疆省部级课题(2014211A001)
作者(Author): 巫朝霞,张瑛瑛
DOI: 10.13568/j.cnki.651094.2018.04.013
参考文献(References):
- [1]Rivest R L,Shamir A,Tauman Y.How to Leak a Secret Advances in Cryptology[J].ASIACRYPT,2001,2000:552-565.
- [2]Gritti C,Susilo W,Plantard T.Logarithmic size ring signatures without random oracles[J].Information Security Iet,2015,10(1):1-7.
- [3]Man H A,Liu J K,Susilo W,et al.Secure ID-based linkable and revocable-iff-linked ring signature with constant-size construction[J].Theoretical Computer Science,2013,469(1):1-14.
- [4]Cayrel P L,Lindner R,Rückert M,et al.A Lattice-Based Threshold Ring Signature Scheme[M].Progress in Cryptology-LATINCRYPT 2010.Springer Berlin Heidelberg,2010:255-272.
- [5]Xu J,Zhang Z,Feng D.A Ring Signature Scheme Using Bilinear Pairings[C].International Conference on Information Security Applications.Springer-Verlag,2004:160-169.
- [6]Lv X,Xu F,Ping P,et al.Schnorr Ring Signature Scheme with Designated Verifiability[J].Intelligent Automation&Soft Computing,2012,18(6):739-749.
- [7]Shim K A.An efficient ring signature scheme from pairings[J].Information Sciences,2015,300:63-69.
- [8]Cao X,Kou W,Du X.A Pairing-free Identity-based Authenticated Key Agreement Scheme with Minimal Message Exchanges[J].Information Sciences,2010,180(15):2895-2903.