一类具有脉冲策略的登革热模型的动力学分析(英文)Dynamics Analysis for a Dengue Transmission Model with Pulse Culling Mosquitoes
杨晨霞,聂麟飞,张仲华
摘要(Abstract):
提出了一类具有脉冲捕杀策略和标准发生率的登革热传染病模型,通过利用比较原理、Floquet定理和一些分析技巧,得到了该控制模型的基本再生数R_0.即当R_0<1时,无病周期解是渐近稳定的;当R_0>1时,疾病是一直持续的.
关键词(KeyWords): 登革热;脉冲捕杀;无病周期解;渐近稳定性;一致持续性
基金项目(Foundation): partially supported by the National Natural Science Foundation of China(11461067,11402223,11271312);; the China Postdoctoral Science Foundation(20110491750,2012T50836);; the Natural Science Basic Research Plan in Shaanxi Province of China(2015JM1011)
作者(Author): 杨晨霞,聂麟飞,张仲华
DOI: 10.13568/j.cnki.651094.2017.02.005
参考文献(References):
- [1]Esteva L,Vargas C.A model for dengue disease with variable human population[J].J Math Biol,1999,38:220-240.
- [2]Tewa J J,Dimi J L,Bowong S.Lyapunov functions for a dengue disease transmission model[J].Chaos Solitons and Fractal,2009,39:936-941.
- [3]Derouich M,Boutayeb A.Dengue fever:Mathematical modelling and computer simulation[J].Appl Math Comput,2006,177:528-544.
- [4]Gourley S A,Liu R,Wu J.Eradicating vector-borne diseasea via age-structured culling[J].J Math Biosci,2007,54:309-335.
- [5]Hu X,Liu Y,Wu J.Culling structured hosts to eradicate vector-borne diseases[J].Math Bios Eng,2009,325:496-516.
- [6]Xu X X,Xiao Y N,Cheke A R.Models of impulsive culling of mosquitoes to interrupt transmission of West Nile virus to birds[J].Appl Math Model,2015,39(13):3549-3568.
- [7]Zhang F,Zhao X Q.A periodic epidemic model in a patchy environment[J].J Math Anal Appl,2007,325:496-516.
- [8]Lakshmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations[M].Singapore:World Scientific,1989.