有关算子的一些Log-次优化不等式和对称拟范数不等式Logarithmic Submajorization and Symmetric Quasi-Norm Inequalities on Operators
王云;闫成;
摘要(Abstract):
本文利用优化理论及拟范数的性质研究了与Hayajneh-Kittaneh猜想相关的算子不等式.设E(M)是非交换对称拟Banach空间,x_i∈E(M)((p)((p)+),y_i∈E(M)+),y_i∈E(M)((p)((p)+)使得x_iy_i=y_ix_i,i=1,2,…,n,我们证明了‖(∑_(j=1)+)使得x_iy_i=y_ix_i,i=1,2,…,n,我们证明了‖(∑_(j=1)kx_ikx_i(1/2)y_i(1/2)y_i(1/2))(1/2))2‖_(E(M)2‖_(E(M)((r)))≤‖(∑_(j=1)((r)))≤‖(∑_(j=1)kx_i)kx_i)(1/2)(∑_(j=1)(1/2)(∑_(j=1)ky_i)(∑_(j=1)ky_i)(∑_(j=1)kx_i)kx_i)(1/2)‖_(E(M)(1/2)‖_(E(M)((r)))≤‖(∑_(j=1)((r)))≤‖(∑_(j=1)kx_i)(∑_(j=1)kx_i)(∑_(j=1)ky_i)‖_(E(M)ky_i)‖_(E(M)((r)))其中1≤p,q,r<∞且1/r=1/p+1/q.同时我们还给出了一些与log-次优化相关的不等式.
关键词(KeyWords): log-次优化不等式;von Neumann代数;非交换对称拟Banach空间
基金项目(Foundation): 天山青年计划-优秀科技人才项目(2018Q012);; 新疆维吾尔自治区自然科学基金(2018D01C073);; 国家自然科学基金(11761067)~~
作者(Authors): 王云;闫成;
DOI: 10.13568/j.cnki.651094.651316.2020.06.06.0002
参考文献(References):
- [1]BOURIN J C.Matrix subadditivity inequalities and block-matrices[J].International Journal of Mathematics,2009,20(1):679-691.
- [2]HAYAJNEH S,KITTANEH F.Trace inequalities and a question of bourin[J].Bulletin of the Australian Mathematical Society,2013,88(3):384-389.
- [3]LIN M.Remarks on two recent results of Audenaert[J].Linear Algebra and its Applications,2016,489(1):24-29.
- [4]LIU J,WANG Q,SUN F.On Hayajneh and Kittaneh’s conjucture on unitarily invariant norm[J].Journal of Mathematical Inequalities,2017,11(4):1019-1022.
- [5]HAN Y Z,SHAO J J.Notes on two recent results of Audenaert[J].Electronic Journal of Linear Algebra,2016,31(1):147-155.
- [6]DODDS P G,DODDS T K,SUKOCHEV F A.On p-convexity and q-concavity in noncommutative symmetric spaces[J].Integral Equations and Operator Theory,2014,78(1):91-114.
- [7]FACK T,KOSAKI H.Generalized s-numbers ofτ-measurable operators[J].Pacific Journal of Mathematics,1986,123(2):269-300.
- [8]韩亚洲,吐尔德别克.非交换Lp(M;τ)空间中有关连加和及直和的一些不等式[J].新疆大学学报(自然科学版),2009,26(4):408-418.HAN Y Z,BEKJAN T N.Some Inequalities for sums and direct sums of noncommutative spaces operators[J].Journal of Xinjiang University(Natural Science Edition),2009,26(4):408-418.(in Chinese)
- [9]FACK T.Sur la notion de valeur caracteristique[J].Journal of Operator Theory,1982,7(2):307-333.
- [10]BEKJAN T N.Noncommutative symmetric Hardy spaces[J].Integral Equations and Operator Theory,2015,81(2):191-212.
- [11]MOSLEHIAN M S,KIAN M,XU Q H.Positivity of 2×2 block matrices of operators[J].Banach Journal of Mathematical Analysis,2019,13(3):726-743.
- [12]KOSAKI H.An inequality of Araki-Lieb-Thirring(Von Neumann Algebra case)[J].Proceedings of the American Mathematical Society,1992,114(2):477-481.
- [13]HAN Y Z.Submajorization and p-norm inequalities associated with measurable operators[J].Linear and Multilinear Algebra,2017,65(11):2199-2211.
- [14]BEKJAN T N,OSPANOV M N.H¨older-type inequalities of measurable operators[J].Positivity,2017,21(1):113-126.
- [15]DODDS P G,DODDS T K,SUKOCHEV F A,et al.Logarithmic submajorization,majorization and H¨older type inequalities forτ-measurable operators[EB/OL].Indagationes Math,doi:10.1016/j.indag.2020.02.004.
- [16]XU Q H.Analytic functions with values in lattices and symmetric spaces of measurable operators[J].Mathematical Proceedings of the Cambridge Philosophical Society,1991,109(3):541-563.
- [17]DODDS P G,DODDS T K.On a submajorization inequality of T Ando[J].Operator Theory:Advances and Application,1995,75(1):113-131.
- [18]CHONG K M.Some extensions of a theorem of Hardy,Littlewood and P′olya and their applications[J].Canadian Journal of Mathematics,1974,26(6):1321-1340.
- [19]DODDS P G,SUKOCHEV F A.Submajorization inequalities for convex and concave functions of sums of measurable operators[J].Positivity,2009,13(1):107-124.
- [20]BEKJAN T N,MASSEN G.Submajorization of the Araki-Lieb-Thirring inequality[J].Kyushu Journal of Mathematics,2015,69(1):387-392.