网络G(G_0,G_1;M)关于极大连通的点容错度(英文)Vetex Fault Tolerance of G(G_0, G_1; M) Networks with Respect to Maximally Connectivity
孙高兴;孟吉翔;
摘要(Abstract):
我们通常用连通图来模拟互联网络,而图G的连通度是研究网络可靠性和容错性的一个重要参数.如果一个连通图G=(V,E)的连通度达到它的最小度,那么称这个图是极大连通的(简称为最优-κ).如果对于任意的满足|S|≤m的点子集S■V(G),G-S仍然是最优-κ的,那么称图G是m-最优-κ的.图G的关于最优-κ性质的点容错度定义为使得图G是m-最优-κ的最大整数m,记作O_κ(G).本文给出了网络G(G_0,G_1;M)的关于最优-κ性质的点容错度的上下界,并确定了一些著名网络的点容错度.
关键词(KeyWords): 互联网络;极大点连通;点容错度
基金项目(Foundation): supported by NSFC(11531011)
作者(Authors): 孙高兴;孟吉翔;
DOI: 10.13568/j.cnki.651094.2018.03.006
参考文献(References):
- [1]Hellwig A,Volkmann L.Maximally edge-connected and vertex-connected graphs and digraphs:A survey[J].Discrete Mathematics,2008,308:3265-3296.
- [2]Fabrega J,Fiol M.Extraconnectivity of graphs with large girth[J].Discrete Mathematics,1994,127:163-170.
- [3]Fabrega J,Fiol M.On the extraconnectivity of graphs[J].Discrete Mathematics,1996,155:49-57.
- [4]Hong Y,Meng J,Zhang Z.Edge fault tolerance of graphs with respect to super edge connectivity[J].Discrete Applied Mathematics,2012,160:579-587.
- [5]Cheng C,Hsieh S.Bounds for the extra edge connectivity of graphs[C].Computing and Combinatoics,COCOON 2015.Lecture Notes in Computer Science,Springer International Publishing,2015,9198:624-631.
- [6]Hong Y,Zhang Z.Vertex fault tolerance of optimal-κgraphs and super-κgraphs[J].Information Process Letter,2009,109:1151-1155.
- [7]Wang D,Lu M.Edge fault tolerance of super edge connectivity for three families of interconnection networks[J].Information Science,2012,188:260-268.
- [8]Hong Z,Xu J.Vulnerability of super edge-connected networks[J].Theoretical Computuper Science,2014,520:75-86.
- [9]秦德金,田应智,孟吉翔.圈的笛卡积的圈点连通度(英文)[J].新疆大学学报(自然科学版),2017,34(4):415-420.
- [10]田应智,孟吉翔,陈星.半传递重图的限制性边连通度(英文)[J].新疆大学学报(自然科学版),2018,35(1):34-41.
- [11]Li X,Xu J.Edge-fault tolerance of hypercube-like networks[J].Information Process Letter,2009,109:655-659.
- [12]Chen Y,Tan J.Restricted connectivity for three families of interconnection networks[J].Applied Mathematics Compututation,2007,188:1848-1855.
- [13]Chartrand G,Harary F.Planar permutation graphs[J].Annales de l’Institut Henri Poincar′e,B 1967,3:433-438.
- [14]Bondy J,Murty U.Graph Theory with Applications[M].London,New York:Macmillan and Elsevier,1976.
- [15]Abraham S,Padmanabham K.The twisted cube topolgy for muti-processors:a study in network asymmetry[J].Journal of Parallel and Distributed Computing,1991,13:104-110.
- [16]Yang X,Evans D,Megson G.The locally twisted cubes[J].International Journal of Computer Mathematics,2005,82:401-413.
- [17]Kulasinghe P.Connectivity of the crossed cube[J].Information Process Letter,1997,61:221-226.
- [18]Cull P,Larson S.The M¨obius cubes[J].IEEE Transactions on Computers,1992,44:513-524.