一类具有两个固定端点的非线性弹性梁方程的可解性(英文)Solvability of a Class of Nonlinear Elastic Beam Equations with Both Fixed Ends
姚庆六;
摘要(Abstract):
利用Leray-Schauder非线性抉择对下列非线性项含有各阶导数的弹性梁方程建立了一个存在定理:u(4)(t)+f(t,u(t),u′(t),u″(t),u(t))=e(t),0≤t≤1,u(0)=u(1)=u′(0)=u′(1)=0.在材料力学中,该方程描述了两个端点固定的弹性梁的形变.我们的结论表明如果非线性项满足某种线性增长限制则该方程至少有一个解.
关键词(KeyWords): 非线性弹性梁方程;边值问题;存在性;Leray-Schauder非线性抉择
基金项目(Foundation):
作者(Authors): 姚庆六;
参考文献(References):
- [1]A garw a l R P,Chow Y M.Iterative m ethods for fourth order boundary va lue prob lem s[J].J Com pu t A pp lM ath,1984,10(2):203-217.
- [2]D a lm asso R.U n iqueness of pos itive so lu tions for som e non linear fourth-order equations[J].J M th A na l A pp l,1996,201(1):152-168.
- [3]Lou B endong.Pos itive so lu tions for non linear e lastic beam m ode ls[J].In t JM ath M ath Sc i,2001,27(6):365-375.
- [4]M a R uyun,W u Hongp ing.Pos itive so lu tions of fourth-order tw o-po in t boundary va lue prob lem[J].A cta M athSc ien tia,2002,22A(2):244-249,in Ch inese.
- [5]Y ao Q ing liu.Ex istence and m u ltip lic ity of so lu tions for a class of non linear e lastic beam equations w ith bounded-be lownon linearity[J].A cta M ath A pp l S in ica,2004,27(1):117-122,in Ch inese.
- [6]Y ao Q ing liu.Pos itive so lu tions for e igenva lue prob lem s of fourth-order e lastic beam equations[J].A pp lM ath L etters,2004,17(2):237-243.
- [7]G upta C P.Ex istence and un iqueness theorem s for the bend ing of an e lastic beam equation[J].A pp licab le A na lys is,1988,26(3):289-304.
- [8]M a R uyun.Ex istence and un iqueness theorem s for som e fourth-order non linear boundary va lue prob lem s[J].In ternatJM th M ath Sc i,2000,23(11):783-788.