关于Heinz均值的Log-次优化不等式Some Logarithmic Submajorisation Inequalities Related to Heinz Mean
蒋雪瑶;韩亚洲;
摘要(Abstract):
本文利用广义奇异值的方法给出了与半有限冯·诺依曼代数中算子的Heinz均值相关的log-次优化不等式,将相对应的一些矩阵形式的不等式推广到了算子的情形,并得到了如下结论:Λh(f(x)g(y)+f(y)g(x))≤Λ_h(1/2)((f (x)(1/2)((f (x)2+f (y)2+f (y)2)(g(x)2)(g(x)2+g(y)2+g(y)2)),其中0≤x, y∈M, h> 0, f和g都是算子凹函数.同时我们还得到了一些与Heinz均值相关的其它形式的log-次优化不等式.
关键词(KeyWords): 冯·诺依曼代数;log-次优化不等式;可测算子
基金项目(Foundation): 天山青年计划-优秀科技人才项目(2018Q012);; 国家自然科学基金(11761067)~~
作者(Authors): 蒋雪瑶;韩亚洲;
DOI: 10.13568/j.cnki.651094.651316.2020.06.19.0001
参考文献(References):
- [1]BHATIA R.Matrix analysis[M].New York:Springer-Verlag,1997.
- [2]BOURIN J C.Matrix subadditivity inequalities and block-matrices[J].International Journal of Mathematics,2009,20(6):679-691.
- [3]HAYAJNEH S,KITTANEH F.Lieb-Thirring trace inequalities and a question of Bourin[J].Journal of Mathematical Physics,2013,54(3):033504.
- [4]BHATIA R.Trace inequalities for products of positive definite matrices[J].Journal of Mathematical Physics,2014,55(1):013509.
- [5]HAYAJNEH M,HAYAJNEH S,KITTANEH F.Norm inequalities related to the arithmetic-geometric mean inequalities for positive semidefinite matrices[J].Positivity,2018,22(5):1311-1324.
- [6]ALAKHRASS M.Inequalities related to Heinz mean[J].Linear and Multilinear Algebra,2015,64(8):1562-1569.
- [7]HAYAJNEH M,HAYAJNEH S,KITTANEH F.Norm inequalities for positive semidefinite matrices and a question of Bourin[J].International Journal of Mathematics,2017,28(14):94-100.
- [8]HAYAJNEH M,HAYAJNEH S,KITTANEH F.Remarks on some norm inequalities for positive semidefinite matrices and questions of Bourin[J].Mathematical Inequalities&Applications,2017,20(1):225-232.
- [9]ZOU L.Unification of the arithmetic-geometric mean and H¨older inequalities for unitarily invariant norms[J].Linear Algebra and its Applications,2018,562(4):154-162.
- [10]FACK T,KOSAKI H.Generalized s-numbers ofτ-measurable operators[J].Pacific Journal of Mathematics,1986,123(2):269-300.
- [11]周佳,王运霞,吴田峰.τ-可测算子A*XB的一个Schwarz不等式[J].新疆大学学报(自然科学版),2009,26(1):69-73.ZHOU J,WANG Y X,WU T F.A Schwarz inequality forτ-measurable operator A*XB[J].Journal of Xinjiang University(Natural Science Edition),2009,26(1):69-73.(in Chinese)
- [12]TAKESAKI M.Theory of operator algebra I[M].New York:Springer-Verlag,1979.
- [13]DODDS P G,DODDS T K,SUKOCHEV F A,et al.Logarithmic submajorization,uniform majorization and H¨older type inequalities forτ-measurable operators[J].Indagationes Mathematicae,doi:10.1016/j.indag.2020.02.004.
- [14]HAN Y Z.On the Araki-Lieb-Thirring inequality in the semifinite von Neumann algebra[J].Annals of Functional Analysis,2016,7(4):622-635.
- [15]MARSHALL A W,OLKIN I.Inequalities:theory of majorization and its applications[M].New York:Academic Press,1979.