基于DCT与PSO的可见光与红外图像融合方法Method for Visible and Infrared Image Fusion Using Discrete Cosine Transform and Particle Swarm Optimization
朱平哲
摘要(Abstract):
针对可见光与红外图像融合问题,提出一种基于离散余弦变换(discrete cosine transform, DCT)与粒子群优化(Particle swarm optimization, PSO)的图像融合方法.先对源图像进行DCT变换再采用PSO算法获得优化权值因子,并用于完成源图像DCT系数的融合;其次,进行DCT逆变换得到初始融合图像;最后,利用直方图均衡化模型对初始融合图像进行优化得到最终融合图像.仿真实验结果表明,该方法与现有的代表性融合方法相比具有显著的优势.
关键词(KeyWords): 自适应直方图均衡化;离散余弦变换;粒子群优化;图像融合
基金项目(Foundation): 河南省重点科技攻关基金项目(14210221042);; 河南省教育厅科学技术研究重点基础研究计划基金项目(14A520048)
作者(Author): 朱平哲
DOI: 10.13568/j.cnki.651094.2018.04.010
参考文献(References):
- [1]Prasad B D,Dhuli R.Two scale image fusion of visible and infrared images using saliency detection[J].Infrared Physics and Technology,2016,76:52-64.
- [2]Li H F,Qiu H M,Yu Z T,et al.Infrared and visible image fusion scheme based on NSCT and low-level visual features[J].Infrared Physics and Technology,2016,76:174-184.
- [3]Drajic D,Cvejic N.Adaptive fusion of multimodal surveillance image sequences in visual sensor networks[J].IEEE Transactions on Consumer Electronics,2007,53(4):1456-1462.
- [4]Meng F J,Guo B L,Song M,et al.Image fusion with saliency map and interest points[J].Neurocomputing,2016,177(C):1-8.
- [5]曹建芳,史昊,赵青杉.并行Adaboost-BP算法及其在海量图像分类中的应用[J].新疆大学学报(自然科学版),2017,34(1):70-77.
- [6]杨晓,胡可杨,汪烈军,等.基于布谷鸟优化的三维OTSU图像分割算法[J].新疆大学学报(自然科学版),2017,34(4):452-458.
- [7]Liu Y,Liu S P,Wang Z F.A general framework for image fusion based on multi-scale transform and sparse representation[J].Information Fusion,2015,24:147-164.
- [8]Vijayarajan R,Muttan S.Adaptive principal component analysis fusion schemes for multifocus and different optic condition images[J].International Journal of Image and Data Fusion,2016,7(2):189-201.
- [9]Zhao J F,Chen Y T,Feng H J,et al.Infrared image enhancement through saliency feature analysis based on multi-scale decomposition[J].Infrared Physics and Technology,2014,62:86-93.
- [10]Kumar S.Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform[J].Signal Image&Video Processing,2013,7(6):1125-1143.
- [11]Bhatnagar G,Liu Z.A novel image fusion framework for night-vision navigation and surveillance[J].Signal Image&Video Processing,2015,9(1):165-175.
- [12]Kong W W,Lei Y,Ren M M.Fusion method for infrared and visible images based on improved quantum theory model[J].Neurocomputing,2016,212(SI):12-21.
- [13]Zhou Z Q,Wang B,Li S,et al.Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J].Information Fusion,2016,30(C):15-26.
- [14]Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C].New York:Proceedings of the Sixth International Symposium on Micro Machine and Human Science,1995:39-43.
- [15]Wang Z B,Ma Y D.Medical image fusion using m-PCNN[J].Information Fusion,2008,9(2):176-185.
- [16]Yang S Y,Wang M,Lu Y X,et al.Fusion of multiparametric SAR images based on SW-nonsubsampled contourlet and PCNN[J].Signal Processing,2009,89(12):2596-2608.
- [17]Wang N Y,Ma Y D,Zhan K.Spiking cortical model for multifocus image fusion[J].Neurocomputing,2014,130(3):44-51.
- [18]Adu J H,Gan J H,Wang Y,et al.Image fusion based on nonsubsampled contourlet transform for infrared and visible light image[J].Infrared Physics and Technology,2013,61:94-100.
- [19]靳霞,雳志豪.框架变换耦合SUSAN的多聚焦图像融合算法[J].计算机工程与设计,2017,38(9):2425-2431.
- [20]管飚.基于小波变换的多聚焦图像融合方法[J].吉林大学学报(理学版),2017,55(4):915-920.
- [21]刘栓,刘直良,张权焯.非下采样Contourlet变换耦合区域特性的多聚焦图像融合算法[J].河南理工大学学报(自然科学版),2017,36(4):106-112.