新疆大学学报(自然科学版)(中英文)

1982, (03) 9-22

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

关于赋范线性空间中子空间的正交补的初步探讨
ON THE ORTHOGONAL COMPLEMENTS OF SUBSPACES IN NORMED LINEAR SPACES

许汪涛;

摘要(Abstract):

在一般的赋范线性空间X中,R.C.James等使用了如下的定义:x⊥y的充分必要条件是■λ∈φ‖x‖≤‖x+λy‖。在这个基础上我们有定义1.2 如果X=M⊕N,M⊥N,则称N为M(在X上)的右正交补,记为M;而M称为N(在X上)的左正交补,记为⊥;而M称为N(在X上)的左正交补,记为N。本文准备讨论如上定义的正交补的最基本的问题,即 <1> 正交补的存在问题(§3); <2> 正交补的唯一性问题(§4); <3> 右正交补的结构表示(§5); <4> 右正交补与算子的保范延拓以及投影算子的联系(§2)。我们将得到一些有意义的结果,其中有些推广或改进了已知的结果。它们是: <1> [推论2.2]设X是内积空间,P是X上的投影,P≠θ。那末P是正交投影的充分必要条件是‖P‖=1。 <2> [例3:6]存在一个三维Banach空间,它的每一个二维子空间M,M⊥N。本文准备讨论如上定义的正交补的最基本的问题,即 <1> 正交补的存在问题(§3); <2> 正交补的唯一性问题(§4); <3> 右正交补的结构表示(§5); <4> 右正交补与算子的保范延拓以及投影算子的联系(§2)。我们将得到一些有意义的结果,其中有些推广或改进了已知的结果。它们是: <1> [推论2.2]设X是内积空间,P是X上的投影,P≠θ。那末P是正交投影的充分必要条件是‖P‖=1。 <2> [例3:6]存在一个三维Banach空间,它的每一个二维子空间M,M不存在;因而每一个一维子空间N,⊥不存在;因而每一个一维子空间N,N不存在。 <3> [推论5.3|设X是(复的)平滑的赋范线性空间,M是X的子空间。如果{X_α|α∈∧}是X的这样的子空间的全体:MX_α并且M是X_α的余维数是1的子空间。那末M在X上的右正交补存在的充分必要条件是M在每个X_α上的右正交补存在。 <4> [定理6.1]设X是连续的半内积空间,X在其导出范数下是范数自反的。那末对X上的每一个连续线性泛函f,都存在y∈X使得x∈X:f(x)=[x,y]。如果X在其导出范数下又是严格凸的,则y是唯一的。

关键词(KeyWords):

Abstract:

Keywords:

基金项目(Foundation):

作者(Authors): 许汪涛;

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享