广义Mycielskian图的连通度(英文)Connectivity of generalized Mycielskians
曹香兰,艾尔肯·吾买尔
摘要(Abstract):
Mycieski定义了一个图的运算即把一个图G变换为一个称为G的Mycielskian图的新图μ(G).广义Mycielskian图μm(G)(m≥0)是图的Mycielskian图的一个自然推广.本文证明对任意非平凡连通图G有κ(μm(G))=min{δ(G)+1,(m+1)κ(G)+1},而且对于m,i≥1,λ(μm(G))=λ(G)+i当且仅当δ(G)=λ(G)+i 1,其中κ(G),λ(G)和δ(G)分别为图G的连通度,边连通度和最小度.
关键词(KeyWords): Mycielskian图;广义Mycielskian图;连通度;边连通度
基金项目(Foundation): supported by NSFC(No.11061034)and XJEDU2010I01
作者(Author): 曹香兰,艾尔肯·吾买尔
参考文献(References):
- [1]Bondy J A,Murty U S R.Graph Theory[M].Berlin:Springer,2008.
- [2]Mycielski J.Sur le colouring des graphes[J].Colloq Math,1955,3:161-162.
- [3]Chang G J,Huang L,Zhu X.Circular chromatic number of Mycielski’s graph[J].Discrete Math,1999,205:23-37.
- [4]Caramia M,Dell’Olmo P.A lower bound on the chromatic number of Mycielski graphs[J].Discrete Math,2001,235:79-86.
- [5]Fan G.Circular chromatic number and Mycielski graphs[J].Combinatoria,2004,24(1):127-135.
- [6]Hajibolhassan D,Zhu X.The circular chromatic nmuber and Mycielski construction[J].J Graph Theory,2003,44:106-115.
- [7]Lam P C B,Lin W,Gu G,et al.Circular chromatic number and a generalization of the construction of Mycielski[J].J Combin.Theory Ser B,2003,89:195-205.
- [8]Liu D.Circular chromatic number for iterated Mycielski graphs[J].Discrete Math,2004,285335-340.
- [9]Liu H.Circular chromatic number and Mycielski graphs[J].Acta Math Sci,2006,26B(2):314-320.
- [10]Balakrishnan R,Francis Raj S.Connectivity of the Mycielskian of a graph[J].Discrete Math,2008,308:2607-2610.
- [11]Guo L,Guo X.Connectivity of the Mycielskian of a digraph[J].Appl Math Lett,2009,22:1622-1625.
- [12]Guo L,Liu R,Guo X.Super Connectivity and Super Edge Connectivity of the Mycielskian of a Graph[J].Graphs Combin,DOI10.1007/s00373-011-1032-3.
- [13]Tardif C.Fractional chromatic numbers of cones over graphs[J].J Graph Theory,2001,38:87-94.
- [14]Larsen M,Propp J,Ullman D.The fractional chromatic number of Mycielski’s graphs[J].J Graph Theory,1995,19:411-416.
- [15]Lin W,Wu J,Lam P,et al.Several parameters of generalized Mycielskians[J].Discrete Appl Math,2006,154:1173-1182.
- [16]Stiebitz M.Beitra¨ge zur Theorie der fa¨rbungskritschen Graphen[M].Ilmenau:Abilitation Thesis,Thchnical University Ilmenau,1985.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享