Sylvester可测算子方程的解The Solution of Sylvester Equation on Trace Measurable Operators
许毛丹;闫成;
摘要(Abstract):
利用非交换空间中的Frechet导数的性质,研究在半有限von Neumann代数上关于可测算子的Sylvester方程的解.进一步,当可测算子方程是由算子单调函数的反函数进行演算给出时,我们给出其方程积分形式的解.
关键词(KeyWords): von Neumann代数;Frechet导数;Sylvester方程;τ可测算子
基金项目(Foundation): 国家自然科学基金(11801486)
作者(Authors): 许毛丹;闫成;
DOI: 10.13568/j.cnki.651094.651316.2021.11.28.0003
参考文献(References):
- [1]SYLVESTER J J.Sur l’equation en matrices px=xq[J].Comptes Rendus de l’Acad′emie des Sciences,1884,99(2):67-71.
- [2]DALECKI Y L.On the asymptotic solution of a vector differential equation[J].Doklady Akademii Nauk Sssr,1953,92:881-884.
- [3]ROSENBLUM M.On the operator equation BX-XA=Q[J].Duke Mathmatical Journal,1956,23(2):263-269.
- [4]ROSENBLUM M.The operator equation BX-XA=Q with selfadjointAandB[J].Proceedings of the American Mathematical Society,1969,20(1):115-120.
- [5]BHATIA R,ROSENTHAL P.How and why to solve the operator equation AX-XB=Y[J].Bulletin of the London Mathematical Society,1997,29(1):1-21.
- [6]HIAI F,KOSAKI H.Means for matrices and comparison of their norms[J].Indiana University Mathematics Journal,1999,48(3):899-936.
- [7]DODDS P G,DODDS T K,SUKOCHEV F A,et al.Arithmetic-geometric mean and related submajorisation and norm inequalities forτmeasurable operators:Part II[J].Integral Equations and Operator Theory,2020,92(4):1-60.
- [8]BHATIA R,UCHIYAMA M.The operator equation ■.Expositiones Mathematicae,2009,27(3):251-255.
- [9]SANO T.Fr′echet derivatives for operator monotone functions[J].Linear Algebra and Its Applications,2014,456:88-92.
- [10]DIXMIER J.Von Neumann algebras[M].Amsterdam:North-Holland Publishing,1981.
- [11]PISIER G,XU Q.Noncommutative LP-spaces[J].Handbook of the Geometry of Banach Spaces,2003,2:1459-1517.
- [12]TAKESAKI M.Theory of operator algebra I[M].New York:Springer-Verlag,1979.
- [13]RUAN Z J.Operator spaces[M].Oxford:Clarendon Press,2000.
- [14]JIANG X Y,HAN Y Z.Some logarithmic submajorisation inequalities related to Heinz mean[J].Journal of Xinjiang University(Natural Science Edition in Chinese and English),2021,38(4):397-406+424.
- [15]WANG Y,YAN C.Logarithmic submajorization and symmetric quasi-norm inequalities on operators[J].Journal of Xinjiang University(Natural Science Edition in Chinese and English),2021,38(4):407-424.
- [16]FACK T,KOSAKI H.Generalizeds-numbers ofτ-measurable operators[J].Pacific Journal of Mathematics,1986,123(2):269-300.
- [17]AKERKAR R.Nonlinear functional analysis[M].New Delhi:Narosa Publishing House,1999.
- [18]WANG Y,SHAO J.Some logarithmic submajorisations and determinant inequalities for operators with numerical ranges in a sector[J].Annals of Functional Analysis,2021,12(2):1-14.
- [19]BHATIA R.Matrix analysis[M].New York:Springer-Verlag,1997.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享