一类具有消失χ曲率的(α,β)-度量A Class of(α, β)-Metrics with Vanishing χ Curvature
麻翠玲,张晓玲,何勇
摘要(Abstract):
在芬斯勒几何中,χ曲率是由S曲率定义的一个重要的非黎曼量.研究了一类具有消失χ曲率的(α,β)-度量.首先,给出了一类(α,β)-度量的χ曲率表达式;其次得到了其具有消失χ曲率的刻画方程;最后,构造了一系列具有消失χ曲率的(α,β)-度量.
关键词(KeyWords): (α,β)-度量;S曲率;χ曲率;多项式(α,β)-度量
基金项目(Foundation): 国家自然科学基金(11961061; 11461064; 11761069);; 新疆大学博士启动基金(BS130107)
作者(Author): 麻翠玲,张晓玲,何勇
DOI: 10.13568/j.cnki.651094.651316.2021.04.09.0001
参考文献(References):
- [1]LI B L,SHEN Z M.Ricci curvature tensor and non-Riemannian quantities[J].Canadian Mathematical Bulletin,2015,58:530-537.
- [2]SHEN Z M.On some non-Riemannian quantities in Finsler geometry[J].Canad Math Bull,2013,56:184-193.
- [3]CHEN G Z,LIU L H.On Kropina metrics with non-Riemannian curvature properties[J].Differential Geometry and its Applications,2015,43:180-191.
- [4]CHENG X Y,YUAN M G.On conformally fat(α,β)-metrics with special curvature properties[J].Acta Mathematica Sinica,English Series,2015,31:879-892.
- [5]ZHU H M.On a class of Finsler metrics with special curvature properties[J].Balkan Journal of Geometry and its Applications,2018,23:97-108.
- [6]LI B L,SHEN Z M.Sprays of isotropic curvature[J].International Journal of Mathematics,2018,DOI:10.1142/S0129167X18500039.
- [7]CHENG X Y,SHEN Z M.A class of Finsler metrics with isotropic S-curvature[J].Israel Journal of Mathmatics,2009,169:317-340.
- [8]CHENG X Y,WANG H,WANG M F.(α,β)-metrics with relatively isotropic mean Landsberg curvature[J].Publicationes Mathematicae,2008,72:475-485.