一类广义斐波那契二项式系数序列的对数凹性研究(英文)On Log-concavity of a Generalized Fibonomials Sequence
孙毅
摘要(Abstract):
近年来,在组合数学领域,组合序列的对数凸凹性引起了很多学者的兴趣和关注.文章研究了一类组合序列,称为s-Fibonomial序列,记作(nk)_(Fs).我们证明了(nk)_(Fs)序列对于变量k是对数凹的,而对于变量n不是对数凹的也不是对数凸的;然而,当s是偶数的时候,(nk)_(Fs)序列对变量n却是对数凹的.此外,通过考虑n-k的奇偶性,建立了两个关于s-Fibonomial序列的组合不等式.
关键词(KeyWords): 斐波那契数列;s-Fibonomial序列;对数凹性;对数凸性
基金项目(Foundation): supported by the National Science Foundation of Xinjiang Uygur Autonomous Region(2017D01C084)
作者(Author): 孙毅
DOI: 10.13568/j.cnki.651094.2018.04.005
参考文献(References):
- [1]Hoggatt V E.Fibonacci numbers and generalized binomial coefficients[J].Fibonacci Quarterly,1967,5:383-400.
- [2]Gould H W.Generalization of Hermite’s divisibility theorems and the Mann-Shanks primality criterion for s-Fibonomial arrays,Fibonacci Quart[J].Fibonacci Quart,1974,12:157-166.
- [3]Pita C.On s-Fibonomials[J].Journal of Integer Sequence,2011,3:1-39.
- [4]Seibert J,Trojovsky P.On some identities for the Fibonomial coefficients.[J].Mathematica Slovaca,2005,1:9-19.
- [5]Pita C.More on Fibonomials[C].New York:Proceedings of the XIV Conference on Fibonacci Numbers and Their Applications,Rochester,2010.
- [6]Benjamin A T,Plott S S.A combinatorial approach to Fibonomial coefficients[J].Fibonacci Quarterly,2008,1:7-9.
- [7]Sagan B E,Savage C D.Combinatorial interpretations of binomial coefficient analogues related to Lucas sequences[J].Integers,2010,10:697-703.
- [8]Kwasniewski A K.More on combinatorial interpretation of the fibonomial coefficients[J].Bulletin de la Société des Sciences et des Lettres deód′z.Série:Recherches sur les Déformations,2004,44:23-38.
- [9]Brenti F.Log-concave and unimodal sequences in algebra,combinatorics,and geometry:An update[J].Contemp Math,1994,178:71-89.
- [10]Stanley R P.Log-concave and unimodal sequences in algebra,combinatorics,and geometry[J].Annals of the New York Academy of Sciences,1989,576(1):500-535.