具有三时滞的捕食-被捕食系统的稳定性和分支分析(英文)Stability and Bifurcation Analysis in a Predator-prey System with Three Delays
郝金明;滕志东;
摘要(Abstract):
考虑了一个具有三时滞的捕食-被捕食系统.通过考虑τ1作为分支参数和分析了相应的特征方程,发现系统对于时滞在某些区间上是条件稳定的,并且当τ1穿过某些临界值时Hopf分支会发生.最后,通过一个数值例子来验证本文的理论分析.
关键词(KeyWords): 条件稳定;Hopf分支;时滞
基金项目(Foundation): Supported by The National Science Foundation of P.R.China(10961022)
作者(Author): 郝金明;滕志东;
Email:
DOI:
参考文献(References):
- [1]Kuang Y.Delay differential equations with applications in population dynamics[M].London:Academic Press,1993.
- [2]Freedman H I,H Rao V S.Stability criteria for a system involing two time delays[J].SIAM J Appl Math,1986,46:552-560.
- [3]Freedman H I,Gopalsamy K.Nonoccurence of stability switching in systems with discrete delays[J].Canda Math Bull,1988,31:52-58.
- [4]Yan X,Chu Y.Stability and bifurcation analysis for a delayed Lotka-Volterra predator-prey system[J].J Comput Appl Math,2006,196:198-210.
- [5]Beretta E,Kuang Y.Convergence results in a well-known delayed predator-prey system[J].J Math Anal Appl,1996,204:840-853.
- [6]He X.Stability and delays in a predator-prey system[J].J Math Anal Appl,1996,198:355-370.
- [7]Faria T.Stability and bifurcation for a delay predator-prey model and the effect of diffusion[J].J Math Anal Appl,2001,254:433-463.
- [8]Hale J,Lunel S M.Introduction to functional differential equations[M].New York:Springer,1993.
- [9]Hale J K,Infante E F,Tsen F S P.Stability in linear delay equations[J].J Math Anal Appl,1985,105:533-555.
- [10]Ma Z,Huo H,Liu C.Stability and Hopf bifurcation analysis on a predator-prey model with discrete and distributed delays[J].Nonlinear Anal RWA,2009,10:1160-1172.
- [11]Cooke K L,Grossman Z.Discrete delay,distributed delay and stability switches[J].J Math Anal Appl,1982,86:592-627.
- [12]Chow S N,Hale J K.Methods of bifurcation theory[J].New York:Springer,1982.
- [13]Yan X,Li W.Hopf bifurcation and global periodic solutions in a delayed predator-prey system[J].Appl Math Comput,2006,177:427-445.
- [14]Lu Z,Wang W.Global stability for two-species Lotka-Volterra systems with delay[J].J Math Anal Appl,1997,208:277-280.
- [15]Song Y,Han M,Peng Y.Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays[J].Chaos Solitons and Fractals,2004,22:1139-1148.
- [16]Baptistini M,Taboas P.On the stability of some exponential polynomials[J].J Math Anal Appl.1997,205:259-272.