新疆大学学报(自然科学版)

1987, (03) 32-37

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

Banach空间的张量积及其共轭空间
ON THE TENSOR PRODUCT OF Banach SPACES AND CONJUGATE SPACES

陈青

摘要(Abstract):

张量积函子是同调代数中研究模范畴的重要工具。在[1]的基础上,本文对B-空间的张量积做了讨论,得出一些新的结论。设E是B-空间,{E_i,j∈J}是B-空间族,作为赋范空间,则E(?)∪_(i∈J)E_i与∪_(i∈J)(E(?)E_i)等距同构。作为B-空间,E(?)_(?)∪_(i=1)~(?)E_i与∪_(i=1)~(?)(E(?)_(β_(?))E_i)的子空间等距同构。其次本文推广了著名的伴随同构定理([2]Th2.11).设E_1,E_2与F是B-空间,则(?)(E_1(?)_(?)E_2,F)分别与(?)(E_2,(?)(E_1,F)),(?)(E_1,(?)(E_2,F))等距同构.特别(E_1(?)_(?)E_2)分别与(?)(E_2,E_1),(?)(E_1,E_2)等距同构.最后,设E_i,F_i是B-空间,f∈(?)(E_1,F_1),g∈(?)(E_2,F_2),则存在唯一的φ∈(?)(E_1(?)_(β_1)E_2,F_1(?)_(β_2)F_2),记φ=f(?)g.令P={sum from i to f_i(?)g_i},则P与(?)(E_1,F_1)(?)_(?)(?)(E_2,F_2)的稠密子空间(?)(E_1,F_1)(?)(E_2,F_2)等距同构。特别E_1(?)E_2是(E_1(?)_(β_1)E_2)的子空间。本文中的记号同于[1]。文中涉及到张量积的范数都是Cross-范数。

关键词(KeyWords): B-空间;张量积;Cross-范数;完备化;等距同构;共轭空间

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 陈青

Email:

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享