含时滞非线性扩散合作系统的正周期解存在性与全局吸引性On the Existence and Global Attractivity of Positive Perioic Solution for a Cooperative System with Nonlinear Diffusion and Delays
艾合麦提·麦麦提阿吉;
摘要(Abstract):
种群动力学模型的正周期解存在性与全局吸引性研究目前已成为现代生物数学理论研究的热点课题之一.本文对具有分布时滞和非线性扩散的两种群合作的系统进行了研究,并通过应用重合度理论和构造适当的Lyapunove泛函得到了周期系统的正周期解的存在性与全局吸引性的充分条件.
关键词(KeyWords): 合作系统;非线性扩散;正周期解;分布时滞;全局吸引性
基金项目(Foundation): 新疆自治区自然科学基金(2016D01C075)
作者(Authors): 艾合麦提·麦麦提阿吉;
DOI: 10.13568/j.cnki.651094.2019.01.001
参考文献(References):
- [1] Chen F. Persistence and global stability for nonautonomous cooperative system with diffusion and time delay[J]. Acta Scientiarum Naturalium(Universitatis Pekinensis),2003, 39:22-28.
- [2] Muhammadhaji A, Teng Z. Positive periodic solutions of two-species Lotka-Volterra cooperative systems with pure distributed delays[J]. J Xinjiang Univ(Natural Sci Ed), 2010, 27(3):280-287.
- [3] Muhammadhaji A, Teng Z. Positive periodic solutions of n-species Lotka-Volterra cooperative systems with delays[J].Vietnam Journal of Mathematics, 2012, 40:453-467.
- [4] Muhammadhaji A,Teng Z. Global attractivity of a periodic delayed N-species model of facultative mutualism[J]. Discrete Dynamics in Nature and Society, 2013:1-11.
- [5] Muhammadhaji A, Teng Z, Rahim M. Dynamical behavior for a class of delayed competitive-mutualism systems[J]. Differ Equ Dyn Syst, 2015, 23:281-301.
- [6] Muhammadhaji A, Mahemuti R, Teng Z. Periodic solutions for n-species Lotka-Volterra competitive systems with pure delays[J]. Chinese Journal of Mathematics, 2015:1-11.
- [7] Hui F, Xiao Y. Existence of multiple periodic solutions for delay Lotka-Volterra competition patch systems with harvesting[J]. Appl Math Modell, 2009, 33:1086-1096.
- [8] Liu Z, Zhong S. Permanence and extinction analysis for a delayed periodic predator-prey system with Holling type II response function and diffusion[J]. Appl Math Comput, 2010, 216:3002-3015.
- [9] Xu R, Chen L. Persistence and stability for a two-species ratio-dependent predator-prey system with time delay in a two-patch environment[J]. Computers Math Appl, 2000, 40:577-588.
- [10] Zhang Z, Wang L. Global attractivity of a positive periodic solution for a nonautonomous stage structured population dynamics with time delay and diffusion[J]. J Math Anal Appl, 2006, 319:17-33.
- [11] Zhu H, Wang K, Lia X. Existence and global stability of positive periodic solutions for predator-prey system with infinite delay and diffusion[J]. Nonlinear Anal RWA, 2007, 8:872-886.
- [12] Zhou X, Shi X, Song X. Analysis of nonautonomous predator-prey model with nonlinear diffusion and time delay[J]. Appl Math Comput, 2008, 196:129-136.
- [13] Chen F. On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay[J]. J Comput Appl Math,2005, 180:33-49.
- [14] Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equations in Lecture Notes in Mathematics[M].Berlin:Springer, 1977.
- [15] Gopalsamy K.Stability and oscillations in delay differential equations of population dynamics[M]. Dordrecht:Kluwer Academic Publishers, 1992.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享