不可微伪凸函数的最优性条件THE OPTIMALITY CONDITIONS OF NONDIFFERENTIABLE PSEUDOCONVEX FUNCTIONS
张华孝;金跃峰;
摘要(Abstract):
<正> 拟凸性和伪凸性是数学规划中的两个非常重要的概念。在数理经济和最优化理论中都有广泛的应用.六十年代初期,O.L.Mangasariam首次提出了伪凸的概念,他在Frechet可做的前提下定义了伪凸函数(以下简称为M—伪凸),并解决了这类函数的优化问题,然而,实际问题中偶到的函数往往是不可微的,这就要求人们对不可微规划进行研究。近二十年来,众多的作者从不同的角度对这一问题进行了深入地探讨,给出了各种形式的不可做伪凸函数(见[2—6]),其中以W.E.Diewert的伪凸性定义条件最弱、内涵最广。他用古典的Dim导数代替通常的方向导数或Clarke方向导数,定义了不可微伪凸(简称为D—伪凸)函数,获得了这类函数一些较好的最优性条件。
关键词(KeyWords):
基金项目(Foundation):
作者(Authors): 张华孝;金跃峰;
参考文献(References):
- [1] OL. Mangasaria, "Pseudo-Convex Functions", SIAM Journal on Control 3 (1965) 281--290.
- [2] J. P. Crouzeix and J. A. Ferland, "Criteria for quasi--convexity and pseudo--Convexity: Relationships and comparisons", Mathematical Programming 23 (1982) 193--205.
- [3] W. E. Diewert, "Alternative characterizations of six kinds of quasi--convexity in the nondifferentiable case with applications to nonsmooth programming", in: S. Schaible and W. T. Ziemba eds. Genaralized concavity to optimization and economics (Academic Press, New York, 1981) . pp. 51--93.
- [4] R. Mifflin, "Semismooth and semiconvex functions in optimizations", SIAM Journal on Control and Optimization 15 (1977) 959--972.
- [5] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables (Academic Press, New York, 1970) .
- [6] J. B. Hiriart--Urruty, "New concepts in nondifferentiable programming", Journees d' Analyse Non Convexe Universite de Pau (France, 1977) .
- [7] F. H. Clarke, "Optimizations and Nonsmooth Analysis" (1983) .
- [8] Sandor KOM |6s|, "some Properties of Nondifferentiable Pseudo-convex Functions", Mathematical Programming 26 (1983) 232--237.
- [9] H. W. Kuhn and A. W. Tucker. (1951) . "Nonlinear Programming", in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability", (J. Neyman, ed). University of California Press, Berkeley, California, 481--492.
- [10] O. L. Mangasarian. (1969) , "Nonlinear Programming" McGraw-Hill, New York.
- [11] F. C. Clarke. (1976) . "A New Approach to Lagrange Multipliers", Mathematics of Operations Resarch 1, 165--174.
- [12] J. B. Hiriart--Urruty. (1978) , "On Optimality Conditions in Nondifferentiable Programming", Mathematical. Programming 14, 73--86.
- [13] M.阿佛里耳,“非线性规划-分析与方法”,上海科学技术出版社.(1979. 10) 。
- [14] V. Barbu and Th. Precupanu, "Convexity and Optimization in Banach Spaces" (1978) .