一维变形t-J_z模型的自旋–能隙相Spin-Gap Phase in the One-Dimensional Modified t-J_z Model
许焱;丁汉芹;
摘要(Abstract):
通过玻色化和重整化群分析方法,我们研究了一维变形t-J_z模型的量子特性.在弱耦合区域和电子半满填充下,我们获得了模型的基态相图,体系表现为自旋-能隙相.电荷-能隙相变线λ_c=(πJ_z/16t)(1/2)把相图分成二个不同的量子相区:λ<λ_c对应Neel序的绝缘相,λ≥λ_c对应超导序与Neel序共存的金属相.诱导产生的三体吸引作用是产生超导TS(1/2)把相图分成二个不同的量子相区:λ<λ_c对应Neel序的绝缘相,λ≥λ_c对应超导序与Neel序共存的金属相.诱导产生的三体吸引作用是产生超导TS0序的物理原因.研究结果揭示一维变形t-J_z模型与t-J_z模型不等价.
关键词(KeyWords): 一维;变形t-J_z模型;自旋–能隙相;弱耦合;相图
基金项目(Foundation): 国家自然科学基金(11664037;11864039)~~
作者(Authors): 许焱;丁汉芹;
DOI: 10.13568/j.cnki.651094.651316.2020.04.15.0006
参考文献(References):
- [1]BEDNORZ J G,M¨ULLER K A.Possible high-Tc superconductivity in the Ba-La-Cu-O system[J].Zeitschrift Fur Physik B,1986,64:189-193.
- [2]TOKURA Y,NAGAOSA N.Enhanced ordering temperatures in antiferromagnetic magnetite superlattices[J].Science,2000,288:462-468.
- [3]ORENSTEIN J,MILLIS A J.Advances in the physics of high-temperature superconductivity[J].Science,2000,288:468-477.
- [4]SACHDEV S.Quantum criticality:competing ground states in low dimensions[J].Science,2000,288:475-480.
- [5]ANDERSON P W.The resonating valence bond state in La2Cu O4 and superconductivity[J].Science,1987,235:1196-1198.
- [6]ISHIGURO T,YAMAJI K.Organic Superconductors[M].Berlin:Springer-Verlag,1990.
- [7]EGGER R,GOGOLIN A O.Effective low-energy theory for correlated carbon nanotubes[J].Physical Review Letters,1997,79:5082-5085.
- [8]AUSLAENDER O M,YACOBY A,DE PICCIOTTO R,et al.Experimental evidence for resonant tunneling in a Luttinger liquid[J].Physical Review Letters,2000,84:1764-1767.
- [9]ZHANG F C,RICE T M.Effective Hamiltonian for the superconducting Cu oxides[J].Physical Review B,1988,37:3759-3761.
- [10]OGATA M,SHIBA H.Bethe-ansatz wave function,momentum distribution,and spin correlation in the one-dimensional strongly correlated Hubbard model[J].Physical Review B,1990 41:2326-2338.
- [11]LIEB E H,WU F Y.Absence of Mott transition in an exact solution of the short-range,one-band model in one dimension[J].Physical Review Letters,1968,20:1445-1448.
- [12]KAWAKAMI N,YANG S K.Correlation functions in the one-dimensional t-J model[J].Physical Review Letters,1990,65:2309-2311.
- [13]OGATA M,LUCHIN M,SORELLA S,et al.Phase diagram of the one-dimensional t-J model[J].Physical Review Letters,1991,18:2388-2391
- [14]ASSAAD F F,W¨URTZ D.Charge and spin structures in the one-dimensional t-J model[J].Physical Review B,1991,44:2681-2696.
- [15]OGATA M,LUCHINI M U,RICE T M.Spin gap in a generalized one-dimensional t-J model[J].Physical Review B,1991,44:12083-12085.
- [16]COLEMAN P.New approach to the mixed-valence problem[J].Physical Review B,1984,29:3035-3044.
- [17]READ N,NEWNS D M,DONIACH S.Stability of the Kondo lattice in the large-N limit[J].Physical Review B,1984,30:3841-3844.
- [18]COLEMAN P,PEPIN C,TSVELIK A M.Supersymmetric spin operators[J].Physical Review B,2000,62:3852-3868.
- [19]CHEN G H,WU Y S.Deformed Hubbard operator,bosonization,and phase diagram of the one-dimensional t-J model[J].Physical Review B,2002,66:155111.
- [20]JAPARIDZE G I,M¨ULLER-HARTMANN E.Triplet superconducivity in a one-dimensional ferromagnetic t-J model[J].Physical Review B,2000,61:9019-9027.
- [21]DZIURZIK C,JAPARIDZE G I,SCHADSCHNEIDER A,et al.Triplet superconductivity vs.easy-plane ferromagnetism in a 1Ditinerant electron system with transverse spin anisotropy[J].European Physical Journal B,2004,37:453-463.
- [22]S′OLYOM J.The Fermi gas model of one-dimensional conductors[J].Advances in Physics,1979,28:201-303.
- [23]VOIT J.One-dimensional Fermi liquids[J].Reports on Progress in Physics,1994,57:977-1116.
- [24]GOGOLIN A O,NERSESYAN A A,TSVELIK A M.Bosonization and Strongly Correlated Systems[M].New York:Cambridge University Press,1998.
- [25]VOIT J.Phase diagram and correlation functons of the half-filled Hubbard model in one dimension[J].Physical Review B,1992,45:4027-4042.
- [26]JAPARIDZE G I,KAMPF A P.Weak-coupling phase diagram of the extended Hubbard model with correlated-hopping interaction[J].Physical Review B,1999,59:12822-12829.
- [27]OTSUKA H.Ground states of the one-dimensional anisotropic extended Hubbard model[J].Physcial Review Letters,2000,84:5572-5575.
- [28]SCHULZ H J.Correlation exponents and the metal-insulator transition in one-dimensional Hubbard model[J].Physical Review Letters,1990,64:2831-2834.
- [29]ALIGIA A A,ARRACHEA L.Triplet superconducivity in quasi-one-dimensional systems[J].Physical Review B,1999,60:15332-15338.
- [30]DING H Q,MA X J,ZHANG J.Investigation of a four-body coupling in the one-dimensional extended Kolb-Penson-Hubbard model[J].Physics Letters A,2017,381:3119-3123.
- [31]DOLCINI F,MONTORSI A.Quantum phases of one-dimensional Hubbard models with three-and four-body couplings[J].Physical Review B,2013,88:115115.
- [32]BARBIERO L,MONTORSI A,RONCAGLIA M.How hidden orders generate gaps in one-dimensional fermionic systems[J].Physical Review B,2013,88:035109.
- [33]NAKAMURA M.Tricritical behavior in the extended Hubbard chains[J].Physical Review B,2000,61:16377-16392.