块竞赛矩阵的谱半径(英文)On the Spectral Radius of Multipartite Tournament Matrices
开沙尔·卡迪尔,塔力甫·阿塔江,尼牙孜·苏来曼,永学荣
摘要(Abstract):
若 T=Tn1,n2 ,… nk是 k一块竟赛矩阵 ,则其谱半径ρ(T)的上界为p(T)≤ k- 12 k Σi
关键词(KeyWords):
竞赛矩阵;谱半径;邻接矩阵
基金项目(Foundation):
NSFC
作者(Author):
开沙尔·卡迪尔,塔力甫·阿塔江,尼牙孜·苏来曼,永学荣
参考文献(References):
- [1]CvetkovicD M,DoobM,SachsH.Spectra ofGraphs[M].NewYork:AcademicPress,1980.
- [2]CvetkovicD M,DoobM.GutrnanI,TorgasevA.Recent results in the theory of graph spectra[J].AnnDiscreteMath,1988,36.
- [3]CvetkovicD M,RowlinsonP.The largest eigenvalue of a graph[J].L inear andMultilinearAlgebra,1990,28(3):33.
- [4]HongY.A Bound on the spectra radius of graphs[J].LinearAlgebraAppl,1988,108:135-140.
- [5]BrighamR C,DuttonR D.Bounds on the graph spectra[J].JCombinTheorySerB,1984,37:228-234.
- [6]BrualdiR A,HoffmanA J.On the spectral radius of(0,1) matrix[J].L inearAlgebraAppl,1985,65:133-146.
- [7]StanleyR P.A bound on the spectral radius of graphs with e edges[J].L inearAlgebraAppl,1987,87:267-269.
- [8]PowersD L.Bounds on graph eigenvaluse[J].L inearAlgebraAppl,1989,117:65-74.
- [9]HongY.Bounds of eigenvaluse of graphs[J].DiscreteMath,1993,123:65-74.