新疆大学学报(自然科学版)(中英文)

1985, (03) 56-62

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

关于图与有向图自同构群的一个定理(英文)
A Theorem on Automorphism Groups of Graphs and Digraphs

陈荣斯

摘要(Abstract):

设Γ=(V,E)表示无重边无自环的简单图,D=(V,A)表示对Γ定向而得到的有向图。Γ与D的自同构群分别记为G(Γ)与G(D)。Jerald A.kabell在第二届国际组合数学会议上提出:何时一个图可定向而保持其自同构群不变,即G(Γ)=G(D)?本文得到的主要定理回答了这个问题。设π表示顶点集V的一个置换。π可分解为若干不相交循环置换的乘积,我们称其中长为2的循环置换为相应于π的对换。定义1 设π∈G(Γ),(i,j)为相应于π的一个对换。若(v_i,v_j)是Γ的一条边,则称对换(i,j)为π的关于Γ一个奇异对换。定义2 若图Γ存在一个定向使得D与Γ的自同构群相同,则称Γ有可行定向。定理图Γ有可行定向的充要条件是Γ的任意自同构π均无关于Γ的奇异对换。

关键词(KeyWords):

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 陈荣斯

Email:

DOI:

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享