有向循环图的圈直积分解、哈密顿性及自同构群THE CYCLE CARTESIAN PRODUCT DECOMPOSITION HAMILTONIAN PROPERTR, AND THE AUTOMORPHISM GROUP OFDIRECTED CIRCULANT
孟吉翔,郭晓峰
摘要(Abstract):
本文给出了有向循环图可分解为圈的直积的一个充分条件,基于这一结果,讨论了它们的哈密顿性及自同构群。
关键词(KeyWords): 循环图;哈密顿性;自同构群
基金项目(Foundation): 国家自然科学基金
作者(Author): 孟吉翔,郭晓峰
参考文献(References):
- 1 张先迪,李正良.有限群上的Cayley有向图的哈密顿回路.系统科学与数学,1990;10(2) :169~174。
- 2 Trotter W. T. Jr and Erdos P, When the cartesian product of directed cycles is hamiltonian. J Graph Theory 1978; 2: 137~142
- 3 Curran S J and Witte D. Hamiltonian paths in Cartesian products of driected cycles. Ann. Discrete Math, 1985; 27: 35~74
- 4 Alspach B. Point-symmetric graphs and digraphs of prime order. J Combin Theory(B), 1973; 15: 12~17
- 5 孙良.2-循环图的自同构群.北京工业学院学报,1984,4:57~60
- 6 Bondy J A and Murty U S R. Graph theory with applications. 1976
- 7 Adam A. Research problem 2~10. J Combinatorial Theory, 1967;2: 393
- 8 Godsil C D. On Cayley graph isomorphisme, Ars, Combinatoria, 1983; 15: 231~246
- 9 Witte D. On hamiltonian paths in Cayley diagrams. Discrete Math, 1982; 38: 99~108