冠图G_1οK_(m1,m2)的邻接谱(英文)The Adjacency Spectrum of the Corona Graph G_1 ο K_(m1,m2)
程莉莉,黄琼湘
摘要(Abstract):
给定简单图G1和G2,G1的顶点标记为v1,v2,...,vn1.图G1和G2的冠图G1οG2被定义为取n1个G2的拷贝,然后连接vi与相应的G2的第i个拷贝中的每一个点(i=1,2,...,n1)所得到的图.在文献[2]中,对连通图G1和任一正则图G2,S.Barik,S.Pati和B.K.Sarma给出了G1οG2的邻接谱的完整的表达式.继文献[2]的工作进一步考虑当G2是非正则图时冠图G1οG2的邻接谱.本文完全确定了冠图G1οKm1,m2的邻接谱,其中Km1,m2是完全二部图.
关键词(KeyWords): 邻接谱;完全二部图;冠图
基金项目(Foundation):
作者(Author): 程莉莉,黄琼湘
参考文献(References):
- [1]Cvetkovic D M,Doob M,Sachs H.Spectra of Graphs[M].Now York:Academic Press,1980.
- [2]Barik S,Pati S,Sarma B K.The spectrum of the corona of two graphs[J].Discrete Mathematics,2007,21:47-56.
- [3]Barik S,Neumann M,Pati S.On nonsingular trees and a reciprocal eigenvalue property[J].Linear Multilinear Algebra,2006,54:453-465.
- [4]Brualdi R A,Ryser H J.Combinatorial Matrix Theory,Encyclopedia of Mathematics and its Applications[M].Cambridge,UK:Cambridge University Press,1991.
- [5]Fiedler M.Algebraic connectivity of graphs[J].Czechoslovak Math J,1973,23:298-305.
- [6]Harary F.Graph Theory[M].Addison-Wesley,1969.