图的生成可圈性(英文)A Note on the Spanning Cyclability of Graphs
齐豪;艾尔肯·吾买尔;
摘要(Abstract):
给定一个图G=(V,E)及其顶点集V的互不相交的非空子集A1,A2,···,Ar,如果存在互不相交的圈C1,C2,···,Cr满足Ai?V(Ci)(i=1,2,···,r)并且C1∪C2∪···∪Cr生成G,则称G是关于子集A1,A2,···,Ar生成可圈的.如果G关于V的任意r个互不相交的子集A1,A2,···,Ar都是生成可圈的,则称G是r-生成可圈的.进一步,如果G对于任意满足|A1∪A2∪···∪Ar|≤t的互不相交的点子集A1,A2,···,Ar是r-生成可圈的,则称G是阶数为t的r-生成可圈图.本文中,我们证明了:如果G是顶点数n≥3r+1,边数m≥(n-1)(n-2)2+k+r-2(r≥1,3≤k≤n-r+1)的图,则G是阶数为k+r-3的r-生成可圈图.本文将文献[1]中r=2的结果推广到了一般的情形.
关键词(KeyWords): 哈密尔顿图;可圈性;生成可圈性
基金项目(Foundation): supported by NSFC(11361060)
作者(Authors): 齐豪;艾尔肯·吾买尔;
参考文献(References):
- [1]Cheng E,Hsu L-H,Lin C-K,L′aszl′o L.On the cyclability of graphs[J].J Combinatorial Mathematics and Combinatorial Computing,to appear(2014).
- [2]Bondy J A,Murty U S R.Graph Theory[M].London:Springer,2008.
- [3]Albert M,Aldred R E L,Holton D.On 3*-connected graphs[J].Austral J Comb,2001,24:193-208.
- [4]Hsu L-H,Lin C-K.Graph Theory and Interconnection Networks[M].CRC Press,Taylor&Francis Group,2009.
- [5]Faudree R J.Survey of results on k-ordered graphs[J].Discrete Math,2001,229:73-87.
- [6]Faudree R J,Gould R,Kostochka A V,Lesniak L,Schiermeyer I,Saito A.Degree conditions for k-ordered hamiltonian graphs[J].J Graph Theory,2003,42:199-210.
- [7]Ng L,Schultz M.k-Ordered hamiltonian graphs[J].J Graph Theory,1997,24:45-57.
- [8]Lin C-K,Tan J J M,Hsu L-H,Tzu L-K.Disjoint cycles in hypercubes with prescribed vertices in each cycle[J].Discrete Appl Math,2013,161:2992-3004.
- [9]Ore O.Arc coverings of graphs[J].Annali di Matematica Pura ed Applicata,1961,55:315-321.