周期环境的具有年龄结构的单种群恒化器模型的全局动力学(英文)Global Dynamics of a Single-species Chemostat Model in a Periodic Environment with Stage Structure
彭美丽,滕志东
摘要(Abstract):
研究了一个ω周期环境的具有年龄结构的恒化器模型,阈值R0被一个特殊线性方程的基解矩阵所定义,全局动力学被阈值R0决定,即:如果R0<1种群灭绝周期解全局渐近稳定;如果R0>1则种群持久.
关键词(KeyWords): 恒化器模型;年龄结构;全局渐近稳定;持久;阈值
基金项目(Foundation): supported by The National Natural Science Foundation of P.R.China(10961022,10901130);; The Scientific Research Programmes of Colleges in Xinjiang(XJEDU2007G01,XJEDU2008S10)
作者(Author): 彭美丽,滕志东
参考文献(References):
- [1]Droop M.An expriment with a chemostat[J].J Mar Biol Assoc U K,1966,46:659-663.
- [2]Pascual M,Caswell H.From the cell cycle to population cycles in phytoplankton-nutrient interaction[J].Ecology,1997,78:897-915.
- [3]Minkevich I,Abramychev A.The dynamics of continous microbial culture by cell age distribution and concentration of one substrate[J].Bull Math Biol,1994,56:837-840.
- [4]Fussmann G,Ellner S,Shertzer K,et al.Crossing the Hopf bifurcation in a live predator-prey system[J].Science,2000,290:1358-1374.
- [5]Toth D,Kot M.Limit cycles in chemostat model for a single species with age structure[J].Math Biosci,2006,202:194-217.
- [6]Toth D.Strong resonance and chaos in a single species with periodic pulsing of resource[J].Chaos Solit Frac,2008,38:55-69.
- [7]Li S,Pei Y,Li C,et al.Stability analysis for a single-species chemostat model with age structure and contribution of population to resource[J].J Math Chem,2010,47:111-122.
- [8]Zhang F,Zhao X.A periodic epidemic model in a patchy environment[J].J Math Anal Appl,2007,325:496-516.
- [9]Teng Z,Chen L.The positive periodic solutions of periodic Kolmogorov type systems with delays[J].Acta Math Appl Sinca,1999,22:456-464(in Chinese).
- [10]Zhao X-Q.Dynamical Systems in Population Biology[M].New York:Springer-Verlag,2003.