剖分相关图和F-合图的维纳型拓扑指标(英文)Some Wiener-type Indices of Subdivision-related and F-sums Graphs
李虎,艾尔肯·吾买尔,边红
摘要(Abstract):
对于一个连通图G,在[1]中定义了图G的5种与剖分相关的运算,分别定义为L(G),S(G),R(G),Q(G)和T(G).在[2]中,使用了后面四类图给出了F-合图的定义和他们的维纳指标.本文考虑了其中4种运算图的超维纳、逆维纳指标和F-合图的点边维纳指标.
关键词(KeyWords): 特征多项式;特征值;二部图;直径超维纳指标;逆维纳指标;点边维纳指标;剖分相关图;F-合图
基金项目(Foundation): Supported by NSFC(No.11061034,11061035);; XJEDU2010I01
作者(Author): 李虎,艾尔肯·吾买尔,边红
参考文献(References):
- [1]Cvetkocic′D M,Doob M,Sachs H.Spectra of Graphs—Theory and Application[M].NewYork:Academic Press,1980.
- [2]Eliasi M,Taeri B.Four new sums of graphs and their Wiener indices[J].Discr Appl Math,2009,157:794-803.
- [3]Wiener H.Structural determination of the paraffin boiling points[J].J Amer Chem Soc,1947,69:17-20.
- [4]Klein D,Lukovits I,GutmanI.On the definition of hyper-Wiener index for cyclecontaining structures[J].J Chem Inf Comput Phys Chem Sci,1995,35:50-52.
- [5]Balaban A T,Mills D,Ivanciuc O.Reverse-Wiener indices[J].Croat Chem Acta,2000,73:923-941.
- [6]Cash G G.Relationship between Hosaya polynomial and the hyper-Wiener index[J].Appl Math Lett,2002,15:893-895.
- [7]Gutman I.Relation between hyper-Wiener and Wiener index[J].Chem Phys Lett,2002,364:352-356.
- [8]Khalifeh M H,Yousefi-Azari H,Ashrafi A R.The hyper-Wiener index of graph operations[J].Comput Math Appl,2008,56:1402-1407.
- [9]Cai X,Zhou B.Reverse-Wiener indices of connected graphs[J].MATCH Commun Math Comput Chem,2008,60:95-105.
- [10]Luo W,Zhou B.Further properties of reverse-Wiener index[J].MATCH Commun Math Comput Chem,2009,61:653-661.
- [11]Khalifeh M H,Yousefi-Azari H,Ashrafi A R.Some new results on distance-based graph invariants[J].European J Comb,2009,30:1149-1163.
- [12]Yan W,Yang B-Y,Yeh Y-N.The behavior of Wiener indices and polynomials of graphs under five graph decorations[J].Appl Math Lett,2007,20:290-295.
- [13]Metsidik M,Zhang W,Duan F.Hyper-and reverse-Wiener indices of F-sums graphs[J].Discr Appl Math,2010,158:1433-1440.