一类算子在H~P(T~R)上的强平均有界与逼近STRONG MEAN BOUEDNESS AND APPROXIMATION ON IP(T~n) FOR A CLASS OF OPERATORS
江寅生
摘要(Abstract):
本文考虑一类在Hp(Tp(Tn)上弱(Hn)上弱(Hp,Lp,Lp)有界而非(Hp)有界而非(Hp,Hp,Hp)有界的算子,利用Hp)有界的算子,利用Hp,空间原子分解理论证明这类算子在Hp,空间原子分解理论证明这类算子在Hp(Tp(Tn)上的强平均有界性和逼近性质,本文推广了[1],[2]及[3]的结果。
关键词(KeyWords): 强平均有界与副近;H′(T~n)的原子分解;齐性H′(T~n)乘子
基金项目(Foundation):
作者(Author): 江寅生
参考文献(References):
- 1 Jiag Y S, Liu H P and Lu S Z. Some properties of elliptic Riesz means at critical index on H'(T~n) . Reseach Report CMA-R39-87. The Australian National University.
- 2 Chen G L,Jiang Y S and Lu S Z. Approx Theory and Applic, 1989;5(2) :39~50
- 3 Liu H P, Liu Z X and Lu S Z. Strong mean approximation on H'(T~n) for Riesz means at the critical index. Preprint
- 4 刘智新.博士论文.北京师范大学,1989
- 5 Stein E M. Taibleson M H and Weiss G. Rend eirc Met Palermo, 1981;1:81~97
- 6 Stein E M and Weiss G. Introduction to Fourier Analysis on Euclidean Space, Princeton Univ Press,Princeton N J 1971
- 7 Taibleson M H and Weiss G. Asterique, 1980;77:69~149