非交换弱Orlicz空间上τ-可测算子的Hardy-Littlewood极大函数的不等式Hardy-Littlewood Maximal Function Inequalities of τ-measurable Operators in Noncommutative Weak Orlicz Space
杨娟;Aigerim Tleulessova;
摘要(Abstract):
首先给出了非交换弱Orlicz空间范数,然后得到了相关的非交换弱LP空间中的不等式,最后得到了τ-可测算子的Hardy-Littlewood极大函数的弱平均不等式和非交换弱Orlicz空间范数不等式.
关键词(KeyWords): von Neumann代数;τ-可测算子;Hardy-Littlewood极大函数;非交换弱Orlicz空间
基金项目(Foundation): 国家自然科学基金(11071204)
作者(Authors): 杨娟;Aigerim Tleulessova;
参考文献(References):
- [1]Bekjan T N.Hardy-Littlewood maximal funcyion ofτ-measurable operators[J].J Math Anal Appl,2006,322:87-96.
- [2]JIAO Yong-yao,Bekjan T.N.Φ-Inequalities of Hardy-Littlewood maximal function ofτ-measurable operators[J].Journalof Xingjiang University,2009,26(3):311-316.
- [3]Fack T,Kosaki H.Generalized s-numbers ofτ-measure operators[J].Pacific J Math,1986,123:269-300.
- [4]Nelson E.Notes on non-commutative integration[J].J Funct Anal,1974,15:103-116.
- [5]Dodds P D,Dodds T K,Pager B de.Noncommutative Banach function space[J].Math Z,1989,201:583-587.
- [6]Xu Q.Analytic functions with values in lattices and symmetric space of measurable operators[J].Math Proc CambridgePhilos soc,1991,109:541-563.
- [7]Long R.A property of convex functions[J].Kexue Tongbao,1982,27:641-642.
- [8]Liu p.Martingale and Geometry of Banach space[M].BeiJing:Science Press,2007.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享