新疆大学学报(自然科学版)(中英文)

2011, v.28;No.123(03) 260-266

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

汉语语音识别声调模型集成中基于决策树的上下文相关权重参数聚类方法
Tone Model Integration Using Tree Based Weight Parameter Tying in Mandarin Speech Recognition

黄浩,李兵虎,吾守尔.斯拉木

摘要(Abstract):

声调集成是汉语语音识别的一个重要任务.在语音识别的二次解码过程中,使用区分性训练的权重因子进行声调模型集成已被证明是一个有效的方法,而且使用上下文相关的得分加权进行模型组合也得到了应用.上下文相关模型组合方法的一个不足是将会带来大量的训练参数,从而导致权重训练受到过拟合的影响.针对该问题,提出利用声学决策树对上下文相关权重参数进行参数聚类,决策树节点问题集根据最小化训练数据的期望误识率进行选择.提出问题集剪枝来加快决策树的构建速度.汉语连续语音识别实验表明与人工选择上下文相关权重参数相比,该方法能够在大大减少参数数量的条件下明显降低误识率.

关键词(KeyWords): 声调集成;最小音子错误;决策树;汉语语音识别;区分性模型组合;上下文相关

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(60965002);; 新疆高校科研计划培育基金(XJEDU2008S15);; 新疆大学博士科研启动基金(BS090143)资助

作者(Author): 黄浩,李兵虎,吾守尔.斯拉木

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享